Log in

Immobilization of bacteria in silica matrices using citric acid in the sol–gel process

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this work was to use citric acid in the sol–gel process to generate an inorganic polymer that allows bacterial survival for long periods of time and to study the influence of different storage temperatures. We compared gram-negative Escherichia coli and gram-positive Staphylococcus aureus, immobilized and preserved at different storage temperatures in silica matrices prepared by the method proposed. Immobilized E. coli and S. aureus in silica matrices were stored in sealed tubes at 20, 4, −20, and −70°C for 4 months during which the number of viable cells was analyzed. Results show that the immobilization in silica matrices using citric acid, to neutralize the alkalinity of the silica precursors, makes the technique not only biocompatible but also easier to perform since polymerization does not occur immediately as it does when hydrochloric acid is utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030

    Article  CAS  Google Scholar 

  • Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous sol-gel process for proteins encapsulation. Chem Mater 12(8):2434–2441

    Article  CAS  Google Scholar 

  • Bjerketorp J, Håkansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: kee** biosensor microorganism alive and active. Curr Opin Biotechnol 17:43–49

    Article  CAS  Google Scholar 

  • Boninsegna S, Bosetti P, Carturan G, Dellagiacoma G, Dal Monte R, Rossi M (2003) Encapsulation of individual pancreatic islets by solgel SiO2: a novel procedure for perspective cellular grafts. J Biotechnol 100:277–286

    Article  CAS  Google Scholar 

  • Branyic T, Kuncova G, Paca J, Demmerova K (1998) Encapsulation of microbial cells into silica gel. J Sol-Gel Sci Technol 13:283–287

    Article  Google Scholar 

  • Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Biochemically active sol-gel glasses: the trap** of enzymes. Mater Lett 10:1–5

    Article  CAS  Google Scholar 

  • Brinker CJ, Scherer GW (1990) Sol-Gel Science. The physics and chemistry of sol–gel processing. Academic, San Diego, CA

    Google Scholar 

  • Carturan G, Dal Toso R, Boninsegna S, Dal Monte R (2004) Encapsulation of functional cells by sol–gel silica: actual progress and perspectives for cell therapy. J Mater Chem 14:2087–2098

    Article  CAS  Google Scholar 

  • Coiffier A, Coradin T, Roux C, Bouvet O, Livage J (2001) Sol–gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J Mater Chem 11(8):2039–2044

    Article  CAS  Google Scholar 

  • Conroy JFT, Power ME, Martin J, Earp B, Hosticka B, Daitch CE, Norris PM (2000) Cells in sol-gels I: a cytocompatible route for the production of macroporous silica gels. J Sol-Gel Sci Technol 18:268–283

    Article  Google Scholar 

  • Desimone MF, De Marzi MC, Copello GJ, Fernández MM, Malchiodi EL, Diaz LE (2005) Efficient preservation in a silicon oxide matrix of Escherichia coli, producer of recombinant proteins. Appl Microbiol Biotechnol 68:747–752

    Article  CAS  Google Scholar 

  • Desimone MF, De Marzi MC, Copello GJ, Fernández MM, Pieckenstain FL, Malchiodi EL, Diaz LE (2006) Production of recombinant proteins by sol-gel immobilized Escherichia coli. Enzyme Microb Technol (in press). DOI https://doi.org/10.1016/j.enzmictec.2005.11.052

    Article  CAS  Google Scholar 

  • Fennouh S, Guyon S, Livage J, Roux C (2000) Sol–gel entrapment of Escherichia coli. J Sol-Gel Sci Technol 19:647–649

    Article  CAS  Google Scholar 

  • Ferrer ML, Levy D, Gomez-Lor B, Iglesias M (2004) High operational stability in peroxidase-catalyzed non-aqueous sulfoxidations by encapsulation within sol–gel glasses. J Mol Catal B Enzym 27:107–111

    Article  CAS  Google Scholar 

  • Guzman NA, Phillips TM (2005) Immunoaffinity CE for proteomics studies. Anal Chem 1:61A–67A

    Google Scholar 

  • Harms H, Wells MC, Roelof J, van der Meer JR (2006) Whole-cell living biosensors-are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280

    Article  CAS  Google Scholar 

  • Iller RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Lawrence CL, Botting CH, Antrobus R, Coote PJ (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24:3307–3323

    Article  CAS  Google Scholar 

  • Liang RP, Qiu HD, Cai PX (2005) A novel amperometric immunosensor based on three-dimensional sol–gel network and nanoparticle self-assemble technique. Anal Chim Acta 534:223–229

    Article  CAS  Google Scholar 

  • Naskar MK (2005) Effects of organic acids on sol-gel transition of silicic acid—a rheological study. J Mater Sci 40:1011–1309

    Article  Google Scholar 

  • Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J (2002) Living bacteria in silica gels. Nat Matters 1:42–44

    Article  CAS  Google Scholar 

  • Nassif N, Roux C, Coradin T, Rager MN, Bouvet OMM, Livage J (2003) A sol-gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem 13:1–7

    Article  Google Scholar 

  • Park KS, Baumstark-Khan C, Rettberg P, Horneck G, Rabbow E, Gu MB (2005) Immobilization as a technical possibility for long-term storage of bacterial biosensors. Radiat Environ Biophys 44:69–71

    Article  CAS  Google Scholar 

  • Pope EJA, Braun K, Peterson CM (1997) Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Technol 8:635–639

    CAS  Google Scholar 

  • Premkumar JR, Lev O, Rosen R, Belkin S (2001) Encapsulation of luminous recombinant E. coli in sol-gel silicate films. Adv Mater 13:1773–1775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.S.A. is grateful for her doctoral fellowship granted by the Agencia Nacional de Investigaciones Científicas y Técnicas. M.F.D. is grateful for his post-doctoral fellowship granted by the CONICET. The authors would like to acknowledge the support of grants from the Universidad de Buenos Aires (UBACYT B055 and B817); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 02493) and Agencia Nacional de Investigaciones Científicas y Técnicas (BID 1728/OC-AR PICT 14192). L.E.D. is a member of the CONICET Research Counsil. We also wish to thank Professor Rex Davis for language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, G.S., Desimone, M.F. & Diaz, L.E. Immobilization of bacteria in silica matrices using citric acid in the sol–gel process. Appl Microbiol Biotechnol 73, 1059–1064 (2007). https://doi.org/10.1007/s00253-006-0580-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0580-6

Keywords

Navigation