Log in

The structure of N184K amyloidogenic variant of gelsolin highlights the role of the H-bond network for protein stability and aggregation properties

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Mutations in the gelsolin protein are responsible for a rare conformational disease known as AGel amyloidosis. Four of these mutations are hosted by the second domain of the protein (G2): D187N/Y, G167R and N184K. The impact of the latter has been so far evaluated only by studies on the isolated G2. Here we report the characterization of full-length gelsolin carrying the N184K mutation and compare the findings with those obtained on the wild type and the other variants. The crystallographic structure of the N184K variant in the Ca2+-free conformation shows remarkable similarities with the wild type protein. Only minimal local rearrangements can be observed and the mutant is as efficient as the wild type in severing filamentous actin. However, the thermal stability of the pathological variant is compromised in the Ca2+-free conditions. These data suggest that the N to K substitution causes a local disruption of the H-bond network in the core of the G2 domain. Such a subtle rearrangement of the connections does not lead to significant conformational changes but severely affects the stability of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afonine PV, Poon BK, Read RJ et al (2018) Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 74:531–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashish PMS, Perryman PB et al (2007) Global structure changes associated with Ca2+ activation of full-length human plasma gelsolin. J Biol Chem 282:25884–25892

    CAS  PubMed  Google Scholar 

  • Badmalia MD, Singh S, Garg R, Ashish PMS (2017) Visualizing temperature mediated activation of gelsolin and its deactivation by pip: a Saxs based study. Sci Rep 7:4670

    PubMed  PubMed Central  Google Scholar 

  • Bollati M, Scalone E, Bonì F et al (2019) High-resolution crystal structure of gelsolin domain 2 in complex with the physiological calcium ion. Biochem Biophys Res Commun 518:94–99

    CAS  PubMed  Google Scholar 

  • Bonì F, Milani M, Porcari R et al (2016) Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant. Sci Rep 6:33463

    PubMed  PubMed Central  Google Scholar 

  • Bonì F, Milani M, Barbiroli A et al (2018) Gelsolin pathogenic Gly167Arg mutation promotes domain-swap dimerization of the protein. Hum Mol Genet 27:53–65

    PubMed  Google Scholar 

  • Burtnick LD, Koepf EK, Grimes J et al (1997) The crystal structure of plasma gelsolin: implications for actin severing, cap**, and nucleation. Cell 90:661–670

    CAS  PubMed  Google Scholar 

  • Chen CD, Huff ME, Matteson J et al (2001) Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca(2+) stabilization. EMBO J 20:6277–6287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clabbers MTB, Gruene T, Parkhurst JM et al (2018) Electron diffraction data processing with DIALS. Acta Crystallogr D Struct Biol 74:506–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • de la Chapelle A, Tolvanen R, Boysen G et al (1992) Gelsolin-derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nat Genet 2:157–160

    PubMed  Google Scholar 

  • de Rosa M, Barbiroli A, Giorgetti S et al (2015) Decoding the structural bases of D76N ß2-microglobulin high amyloidogenicity through crystallography and Asn-Scan mutagenesis. PLoS ONE 10:e0144061

    PubMed  PubMed Central  Google Scholar 

  • Efebera YA, Sturm A, Baack EC et al (2014) Novel gelsolin variant as the cause of nephrotic syndrome and renal amyloidosis in a large kindred. Amyloid 21:110–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69:1204–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Peddada N, Sagar A et al (2011) Visual insight into how low pH alone can induce actin-severing ability in gelsolin under calcium-free conditions. J Biol Chem 286:20387–20397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgino T, Mattioni D, Hassan A et al (2019) Nanobody interaction unveils structure, dynamics and proteotoxicity of the Finnish-type amyloidogenic gelsolin variant. Biochim Biophys Acta Mol Basis Dis 1865:648–660

    CAS  PubMed  Google Scholar 

  • Huff ME, Page LJ, Balch WE, Kelly JW (2003) Gelsolin domain 2 Ca2+ affinity determines susceptibility to furin proteolysis and familial amyloidosis of finnish type. J Mol Biol 334:119–127

    CAS  PubMed  Google Scholar 

  • Isaacson RL, Weeds AG, Fersht AR (1999) Equilibria and kinetics of folding of gelsolin domain 2 and mutants involved in familial amyloidosis-Finnish type. Proc Natl Acad Sci USA 96:11247–11252

    CAS  PubMed  Google Scholar 

  • Kabsch W (2010) XDS. Acta Crystallogr Sect D Biol Crystallogr 66:125–132

    CAS  PubMed Central  Google Scholar 

  • Kazmirski SL, Howard MJ, Isaacson RL, Fersht AR (2000) Elucidating the mechanism of familial amyloidosis-Finnish type: NMR studies of human gelsolin domain 2. Proc Natl Acad Sci USA 97:10706–10711

    CAS  PubMed  Google Scholar 

  • Kazmirski SL, Isaacson RL, An C et al (2002) Loss of a metal-binding site in gelsolin leads to familial amyloidosis-Finnish type. Nat Struct Biol 9:112–116

    CAS  PubMed  Google Scholar 

  • Khaitlina S, Walloscheck M, Hinssen H (2004) Calcium-induced conformational changes in the C-terminal half of gelsolin stabilize its interaction with the actin monomer. Biochemistry 43:12838–12845

    CAS  PubMed  Google Scholar 

  • Kiselar JG, Janmey PA, Almo SC, Chance MR (2003) Structural analysis of gelsolin using synchrotron protein footprinting. Mol Cell Proteomics 2:1120–1132

    CAS  PubMed  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    CAS  PubMed  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meretoja J (1969) Familial systemic paramyloidosis with lattice dystrophy of the cornea, progressive cranial neuropathy, skin changes and various internal symptoms. A previously unrecognized heritable syndrome. Ann Clin Res 1:314–324

    CAS  PubMed  Google Scholar 

  • Nag S, Ma Q, Wang H et al (2009) Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin. Proc Natl Acad Sci USA 106:13713–13718

    CAS  PubMed  Google Scholar 

  • Nag S, Larsson M, Robinson RC, Burtnick LD (2013) Gelsolin: the tail of a molecular gymnast. Cytoskeleton 70:360–384

    CAS  PubMed  Google Scholar 

  • Nicholls RA, Fischer M, McNicholas S, Murshudov GN (2014) Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr D Biol Crystallogr 70:2487–2499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Page LJ, Suk JY, Huff ME et al (2005) Metalloendoprotease cleavage triggers gelsolin amyloidogenesis. EMBO J 24:4124–4132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel VB, Zhabyeyev P, Chen X et al (2018) PI3Kα-regulated gelsolin activity is a critical determinant of cardiac cytoskeletal remodeling and heart disease. Nat Commun 9:5390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pope B, Maciver S, Weeds A (1995) Localization of the calcium-sensitive actin monomer binding site in gelsolin to segment 4 and identification of calcium binding sites. Biochemistry 34:1583–1588

    CAS  PubMed  Google Scholar 

  • Ratnaswamy G, Huff ME, Su AI et al (2001) Destabilization of Ca2 -free gelsolin may not be responsible for proteolysis in Familial Amyloidosis of Finnish Type. Proc Natl Acad Sci 98:2334–2339

    CAS  PubMed  Google Scholar 

  • Sethi S, Theis JD, Quint P et al (2013) Renal amyloidosis associated with a novel sequence variant of gelsolin. Am J Kidney Dis 61:161–166

    CAS  PubMed  Google Scholar 

  • Solomon JP, Yonemoto IT, Murray AN et al (2009) The 8 and 5 kDa fragments of plasma gelsolin form amyloid fibrils by a nucleated polymerization mechanism, while the 68 kDa fragment is not amyloidogenic. Biochemistry 48:11370–11380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Singh J, Singh Yadav SP et al (2018) The Gelsolin pathogenic D187N mutant exhibits altered conformational stability and forms amyloidogenic oligomers. Biochemistry 57:2359–2372

    CAS  PubMed  Google Scholar 

  • Szatmári D, Xue B, Kannan B et al (2018) ATP competes with PIP2 for binding to gelsolin. PLoS ONE 13:e0201826

    PubMed  PubMed Central  Google Scholar 

  • Vanoni MA, Vitali T, Zucchini D (2013) MICAL, the flavoenzyme participating in cytoskeleton dynamics. Int J Mol Sci 14:6920–6959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitali T, Maffioli E, Tedeschi G, Vanoni MA (2016) Properties and catalytic activities of MICAL1, the flavoenzyme involved in cytoskeleton dynamics, and modulation by its CH, LIM and C-terminal domains. Arch Biochem Biophys 593:24–37

    CAS  PubMed  Google Scholar 

  • Zapun A, Grammatyka S, Déral G, Vernet T (2000) Calcium-dependent conformational stability of modules 1 and 2 of human gelsolin. Biochem J 350(Pt 3):873–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zorgati H, Larsson M, Ren W et al (2019) The role of gelsolin domain 3 in familial amyloidosis (Finnish type). Proc Natl Acad Sci USA 116:13958–13963

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Research Grant of the Amyloidosis Foundation (Michigan, United States) awarded to MdR. The diffraction experiments were performed on beamline ID23-1, ID29 and Massif-3 at the European Synchrotron Radiation Facility (ESRF, France). We are thankful for the provided beamtime and assistance during the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo de Rosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Rosa, M., Barbiroli, A., Bonì, F. et al. The structure of N184K amyloidogenic variant of gelsolin highlights the role of the H-bond network for protein stability and aggregation properties. Eur Biophys J 49, 11–19 (2020). https://doi.org/10.1007/s00249-019-01409-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01409-9

Keywords

Navigation