Log in

Compartmentalization of the redox environment in PC-12 neuronal cells

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Neuronal redox phenomena are involved in numerous biochemical pathways and play a key role in many pathological events and clinical situations. The oxidation/reduction (redox) state present in biological compartments is a major target for possible pharmaceutical intervention and, consequently, the processes associated with its change have attracted increased attention in recent years. Here, we analyze the redox environment and its spatial compartmentalization in differentiated neuronal phenotype of PC-12 cells using a redox-sensitive protein (i.e., a mutant of the Yellow Fluorescent protein), employed ratiometrically. Redox maps of cells were generated with an elevate spatial resolution, and the spatial distributions of highly oxidized and highly reduced regions have been determined. A quantitative analysis of redox maps allows the disclosure of a peculiar spatial organization of the redox environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babior B (2002) The leukocyte nadph oxidase. Isr Med Assoc J 4:1023–1024

    CAS  PubMed  Google Scholar 

  • Bindokas VP, Jordan J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16:1324–1336

    CAS  PubMed  Google Scholar 

  • Bizzarri R, Arcangeli C, Arosio D, Ricci F, Faraci P, Cardarelli F, Beltram F (2006) Development of a novel gfp-based ratiometric excitation and emission ph indicator for intracellular studies. Biophys J 90:3300–3314

    Article  CAS  PubMed  Google Scholar 

  • Bright GR, Fisher GW, Rogowska J, Taylor DL (1987) Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol 104:1019–1033

    Article  CAS  PubMed  Google Scholar 

  • Cressie NA (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Dooley CT, Dore TM, Hanson GT, Jackson WC, Remington SJ, Tsien RY (2004) Imaging dinamic redox changes in mammalian cells with green fluorescent proteins indicators. J Biol Chem 279:22284–22293

    Article  CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  CAS  PubMed  Google Scholar 

  • Gross E Jr, RSB, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67(1):208–216

  • Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350

    Article  CAS  PubMed  Google Scholar 

  • Hongpaisan J, Winters CA, Andrews SB (2004) Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons. J Neurosci 24:10878–10887

    Article  CAS  Google Scholar 

  • Kamata H, Hirata H (1999) Redox regulation of cellular signalling. Cell Signal 11:1–14

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Mitsui Y, Kitani K, Suzuki T (1997) Hyperoxia induces the differentiated neuronal phenotype of pc12 cells by producing eactive oxygen species. Biochem Biophys Res Commun 241:347–351

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Mitsui Y, Kitani K, Suzuki T (1999) Hyperoxia induces the neuronal differentiated phenotype of pc12 cells via a sustained activity of mitogen-activated protein kinase induced by bcl-2. Biochem J 338:465–470

    Article  CAS  PubMed  Google Scholar 

  • Klann E, Thiels E (1999) Modulation of protein kinases and protein phosphatases by reactive oxygen species: implications for hippocampal synaptic plasticity. Prog Neuro-Psychopharmacol Biol Psychiatr 23:359–376

    Article  CAS  Google Scholar 

  • Koch O, Fusco S, Ranieri SC, Maulucci G, Palozza P, Larocca LM, Farre S, Galeotti T, Spirito MD, Pani G (2008) Role of the life span determinant p66shca in ethanol-induced liver damage. Lab Invest 88:750–760

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Chang MY, Park CH, Kim HY, Kim JHH, Son YS, Lee SH (2003) Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 73:156–165

    Article  CAS  PubMed  Google Scholar 

  • Liochev SL (1996) The role of iron-sulfur clusters in in-vivo hidroxyl radical production. Free Radic Res 25:369–384

    Article  CAS  PubMed  Google Scholar 

  • Luby-Phelps K, Mujumdar S, Mujumdar RB, Ernst LA, Galbraith W, Waggoner AS (1993) A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys J 65(1):236–242

    Article  CAS  PubMed  Google Scholar 

  • Maulucci G, Labate V, Mele M, Panieri E, Arcovito G, Galeotti T, Ostergaard H, Winther JR, Spirito MD, Pani G et al (2008) High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein. Sci Signal 1(pl3)

  • Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20:7370–7376

    CAS  PubMed  Google Scholar 

  • Ostergaard H, Henriksen A, Hansen FG, Winther JR (2001) Shedding light on disulfide bond formation: Engineering a redox switch in green fluorescent protein. EMBO J 20:5853–5862

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166(3):337–345

    Article  CAS  PubMed  Google Scholar 

  • Pani G, Bedogni B, Colavitti R, Anzevino R, Borrello S, Galeotti T (2001) Cell compartmentalization in redox signaling. IUBMB Life 52:7–16

    Article  CAS  PubMed  Google Scholar 

  • Rhee (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53–59

  • Suzukawa K, Miura K, Mitsushita J, Resau J, Hirose K, Crystal R, Kamata T (2000) Nerve growth factor-induced neuronal differentiation requires generation of rac1-regulated reactive oxygen species. J Biol Chem 275:13175–13178

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  Google Scholar 

  • Vignais PV (2002) The superoxide-generating nadph oxidase:structural aspects and activation mechanisms. Cell Mol Life Sci 59:1428–1459

    Article  CAS  PubMed  Google Scholar 

  • Wiseman P, Squier J, Ellisman M, Wilson KR (2000) Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 200(1):14–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. De Spirito.

Additional information

Proceedings of the XIX Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Rome, September 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maulucci, G., Pani, G., Fusco, S. et al. Compartmentalization of the redox environment in PC-12 neuronal cells. Eur Biophys J 39, 993–999 (2010). https://doi.org/10.1007/s00249-009-0470-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0470-9

Keywords

Navigation