Log in

Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Revealing the dependence and uniqueness of microbial communities on microplastics could help us better understand the assembly of the microplastic microbial community in river ecosystems. In this study, we investigated the composition and ecological functions of the bacterial community on microplastics from the Three Gorges Reservoir area compared with those in water, sediment, and soil at species-level via full-length 16S rRNA gene sequencing. The results showed that the full-length 16S rRNA sequencing provided more detail and accurate taxa resolution of the bacterial community in microplastics (100%), water (99.90%), sediment (99.95%), and soil (100%). Betaproteobacteriales were the most abundant bacteria in microplastics (14.1%), water (32.3%), sediments (27.2%), and soil (21.0%). Unexpectedly, oligotrophic SAR11 clade was the third abundant bacteria (8.51%) and dominated the ecological functions of the bacterial community in water, but it was less observed on microplastics, with a relative abundance of 2.73×10-5. However, four opportunistic pathogens identified at the species level were selectively enriched on microplastics. Stenotrophomonas maltophilia was the main opportunistic pathogen on microplastics (0.29%). Sediment rather than soil and water may be contributed mostly to pathogens on microplastics. Moreover, some bacteria species with the biodegradation function of microplastics were enriched on microplastics, such as bacteria Rhodobacter sp., and endemic bacteria Luteimonas sp. The distinct bacteria composition on microplastics enhanced several ecological functions, such as xenobiotics biodegradation, which allows screening the bacteria with the biodegradation function of microplastics through long-term exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The raw full-length 16S rRNA gene sequences generated in the present study were deposited in the Sequence Read Archive (SRA) database (https://submit.ncbi.nlm.nih.gov/subs/sra/) under accession number SRP273082.

References

  1. J Li H Liu JP Chen 2018 Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection Water Res 137 362 374 https://doi.org/10.1016/j.watres.2017.12.056

    Article  CAS  Google Scholar 

  2. G Peng P Xu B Zhu M Bai D Li 2018 Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities Environ Pollut 234 448 456 https://doi.org/10.1016/j.envpol.2017.11.034

    Article  CAS  Google Scholar 

  3. Y Yang G Liu W Song C Ye H Lin Z Li W Liu 2019 Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes Environ Int 123 79 86 https://doi.org/10.1016/j.envint.2018.11.061

    Article  CAS  Google Scholar 

  4. A McCormick TJ Hoellein SA Mason J Schluep JJ Kelly 2014 Microplastic is an abundant and distinct microbial habitat in an urban river Environ Sci Technol 48 20 11863 11871 https://doi.org/10.1021/es503610r

    Article  CAS  Google Scholar 

  5. S Oberbeckmann MGJ Loeder M Labrenz 2015 Marine microplastic- associated biofilms - a review Environ Chem 12 5 551 562 https://doi.org/10.1071/EN15069

    Article  CAS  Google Scholar 

  6. M Shen Y Zhu Y Zhang G Zeng X Wen H Yi S Ye X Ren B Song 2019 Micro(nano)plastics: Unignorable vectors for organisms Mar Pollut Bull 139 328 331 https://doi.org/10.1016/j.marpolbul.2019.01.004

    Article  CAS  Google Scholar 

  7. Y Yang W Liu Z Zhang H-P Grossart GM Gadd 2020 Microplastics provide new microbial niches in aquatic environments Appl Microbiol Biotechnol 104 15 6501 6511 https://doi.org/10.1007/s00253-020-10704-x

    Article  CAS  Google Scholar 

  8. L Frere L Maignien M Chalopin A Huvet E Rinnert H Morrison S Kerninon A-L Cassone C Lambert J Reveillaud I Paul-Pont 2018 Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size Environ Pollut 242 614 625 https://doi.org/10.1016/j.envpol.2018.07.023

    Article  CAS  Google Scholar 

  9. IV Kirstein A Wichels G Krohne G Gerdts 2018 Mature biofilm communities on synthetic polymers in seawater - Specific or general? Mar Environ Res 142 147 154 https://doi.org/10.1016/j.marenvres.2018.09.028

    Article  CAS  Google Scholar 

  10. ER Zettler TJ Mincer LA Amaral-Zettler 2013 Life in the "Plastisphere": Microbial Communities on Plastic Marine Debris Environ Sci Technol 47 13 7137 7146 https://doi.org/10.1021/es401288x

    Article  CAS  Google Scholar 

  11. K Kesy S Oberbeckmann B Kreikemeyer M Labrenz 2019 Spatial environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic Sea Mesocosms Front Microbiol 10 1665 https://doi.org/10.3389/fmicb.2019.01665

    Article  Google Scholar 

  12. AR McCormick TJ Hoellein MG London J Hittie JW Scott JJ Kelly 2016 Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages Ecosphere 7 11 e01556 https://doi.org/10.1002/ecs2.1556

    Article  Google Scholar 

  13. M Gong G Yang L Zhuang EY Zeng 2019 Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms Environ Pollut 252 94 102 https://doi.org/10.1016/j.envpol.2019.05.090

    Article  CAS  Google Scholar 

  14. M Arias-Andres U Kluemper K Rojas-Jimenez H-P Grossart 2018 Microplastic pollution increases gene exchange in aquatic ecosystems Environ Pollut 237 253 261 https://doi.org/10.1016/j.envpol.2018.02.058

    Article  CAS  Google Scholar 

  15. P Jiang S Zhao L Zhu D Li 2018 Microplastic-associated bacterial assemblages in the intertidal zone o the Yangtze Estuary Sci Total Environ 624 48 54 https://doi.org/10.1016/j.scitotenv.2017.12.105

    Article  CAS  Google Scholar 

  16. M Arias-Andres MT Kettner T Miki H-P Grossart 2018 Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems Sci Total Environ 635 1152 1159 https://doi.org/10.1016/j.scitotenv.2017.12.105

    Article  CAS  Google Scholar 

  17. JM Bella Di Y Bao GB Gloor JP Burton G Reid 2013 High throughput sequencing methods and analysis for microbiome research J Microbiol Methods 95 3 401 414 https://doi.org/10.1016/j.mimet.2013.08.011

    Article  CAS  Google Scholar 

  18. Schloss PD: The Effects of Alignment Quality, Distance Calculation Method, Sequence Filtering, and Region on the Analysis of 16S rRNA Gene-Based Studies. Plos Computational Biology 6(7): e1000844. https://doi.org/10.1371/journal.pcbi.1000844

  19. JP Earl ND Adappa J Krol AS Bhat S Balashov RL Ehrlich JN Palmer AD Workman M Blasetti B Sen J Hammond NA Cohen GD Ehrlich JC Mell 2018 Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes Microbiome 6 190 https://doi.org/10.1186/s40168-018-0569-2

    Article  Google Scholar 

  20. M Di J Wang 2018 Microplastics in surface waters and sediments of the Three Gorges Reservoir, China Sci Total Environ 616 1620 1627 https://doi.org/10.1016/j.scitotenv.2017.10.150

    Article  CAS  Google Scholar 

  21. Y Bao P Gao X He 2015 The water-level fluctuation zone of Three Gorges Reservoir A unique geomorphological unit Earth-Sci Rev 150 14 24 https://doi.org/10.1016/j.earscirev.2015.07.005

    Article  Google Scholar 

  22. L Yang F Lu X Wang X Duan W Song B Sun Q Zhang Y Zhou 2013 Spatial and seasonal variability of diffusive methane emissions from the Three Gorges Reservoir Biogeosciences 118 2 471 481 https://doi.org/10.1002/jgrg.20049

    Article  CAS  Google Scholar 

  23. D Numberger L Ganzert L Zoccarato K Muehidorfer S Sauer H-P Grossart AD Greenwood 2019 Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing Sci Rep 9 9673 https://doi.org/10.1038/s41598-019-46015-z

    Article  CAS  Google Scholar 

  24. CM Burke AE Darling 2016 A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq Peer J 4 e2492 https://doi.org/10.7717/peerj.2492

    Article  CAS  Google Scholar 

  25. BJ Callahan J Wong C Heiner S Oh CM Theriot AS Gulati SK McGill MK Dougherty 2019 High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution Nucleic Acids Res 47 18 e103 e103 https://doi.org/10.1093/nar/gkz569

    Article  CAS  Google Scholar 

  26. T Magoc SL Salzberg 2011 FLASH: fast length adjustment of short reads to improve genome assemblies Bioinformatics 27 21 2957 2963 https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  Google Scholar 

  27. AM Bolger M Lohse B Usadel 2014 Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics 30 15 2114 2120 https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  28. RC Edgar BJ Haas JC Clemente C Quince 2011 Knight R (2011) UCHIME improves sensitivity and speed of chimera detection Bioinformatics 27 16 2194 2200 https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  Google Scholar 

  29. RC Edgar 2013 UPARSE: highly accurate OTU sequences from microbial amplicon reads Nat Methods 10 10 996 998 https://doi.org/10.1038/nmeth.2604

    Article  CAS  Google Scholar 

  30. NA Bokulich S Subramanian JJ Faith D Gevers JI Gordon R Knight DA Mills JG Caporaso 2013 Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing Nat Methods 10 1 57 U11 https://doi.org/10.1038/nmeth.2276

    Article  CAS  Google Scholar 

  31. C Quast E Pruesse P Yilmaz J Gerken T Schweer P Yarza J Peplies FO Gloeckner 2012 The SILVA ribosomal RNA gene database project: improved data processing and web-based tools Nucleic Acids Res 41 D1 D590 D596 https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  32. Q Wang GM Garrity JM Tiedje JR Cole 2007 Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy Appl Environ Microbiol 73 16 5261 5267 https://doi.org/10.1128/AEM.00062-07

    Article  CAS  Google Scholar 

  33. M Urban A Cuzick J Seager V Wood K Rutherford SY Venkatesh N Silva De MC Martinez H Pedro AD Yates K Hassani-Pak KE Hammond-Kosack 2020 (2020) PHI-base: the pathogen-host interactions database Nucleic Acids Res 48 D1 D613 D620 https://doi.org/10.1093/nar/gkz904

    Article  CAS  Google Scholar 

  34. MGI Langille J Zaneveld JG Caporaso D McDonald D Knights JA Reyes JC Clemente DE Burkepile RLV Thurber R Knight RG Beiko C Huttenhower 2013 Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences Nat Biotechnol 31 9 814 821 https://doi.org/10.1038/nbt.2676

    Article  CAS  Google Scholar 

  35. N Wu Y Zhang Z Zhao J He W Li J Li Xu Wa Y Ma Z Niu 2020 Colonization characteristics of bacterial communities on microplastics compared with ambient environments (water and sediment) in Haihe Estuary Sci Total Environ 708 134876 https://doi.org/10.1016/j.scitotenv.2019.134876

    Article  CAS  Google Scholar 

  36. X Li C Qu Y Bian C Gu X Jiang Y Song 2019 New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics Environ Pollut 255 113312 https://doi.org/10.1016/j.envpol.2019.113312

    Article  CAS  Google Scholar 

  37. M Wang J Tian Z Bu LJ Lamit H Chen Q Zhu C Peng 2019 Structural and functional differentiation of the microbial community in the surface and subsurface peat of two minerotrophic fens in China Plant Soil 437 21 40 https://doi.org/10.1007/s11104-019-03962-w

    Article  CAS  Google Scholar 

  38. X Wu J Pan M Li Y Li M Bartlam Y Wang 2019 Selective enrichment of bacterial pathogens by microplastic biofilm Water Res 165 114979 https://doi.org/10.1016/j.watres.2019.114979

    Article  CAS  Google Scholar 

  39. JP Harrison M Schratzberger M Sapp AM Osborn 2014 Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms BMC Microbiol 14 0232 https://doi.org/10.1186/s12866-014-0232-4

    Article  CAS  Google Scholar 

  40. H Morlon G Chuyong R Condit S Hubbell D Kenfack D Thomas R Valencia JL Green 2008 A general framework for the distance-decay of similarity in ecological communities Ecol Lett 11 9 904 917 https://doi.org/10.1111/j.1461-0248.2008.01202.x

    Article  Google Scholar 

  41. L Zinger A Boetius A Ramette 2014 Bacterial taxa-area and distance-decay relationships in marine environments Mol Ecol 23 4 954 964 https://doi.org/10.1111/mec.12640

    Article  CAS  Google Scholar 

  42. S Jiao Y Yang Y Xu J Zhang Y Lu 2020 Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China ISME J 14 1 202 216 https://doi.org/10.1038/s41396-019-0522-9

    Article  Google Scholar 

  43. Y Li Q Shang J Jiang B Da Y Gao 2019 Study on Processes of Changshou Waterway after 175m Experimental Impoundment of the Three Gorges Reservoir //IOP Conference Series: Earth and Environmental Science IOP Publishing 304 2 022025

    Google Scholar 

  44. Y Gao W Zhang Y Li H Wu N Yang C Hui 2021 Dams shift microbial community assembly and imprint nitrogen transformation along the Yangtze River Water Res 189 116579 https://doi.org/10.1016/j.watres.2020.116579

    Article  CAS  Google Scholar 

  45. LG Antao Barboza A Dick Vethaak BRBO Lavorante A-K Lundebye L Guilhermino 2018 Marine microplastic debris: An emerging issue for food security, food safety and human health Mar Pollut Bull 133 336 348 https://doi.org/10.1016/j.marpolbul.2018.05.047

    Article  CAS  Google Scholar 

  46. J Hwang D Choi S Han J Choi J Hong 2019 An assessment of the toxicity of polypropylene microplastics in human derived cells Sci Total Environ 684 657 669 https://doi.org/10.1016/j.scitotenv.2019.05.071

    Article  CAS  Google Scholar 

  47. EM Eckert A Cesare Di MT Kettner M Arias-Andres D Fontaneto H-P Grossart G Corno 2018 Microplastics increase impact of treated wastewater on freshwater microbial community Environ Pollut 234 495 502 https://doi.org/10.1016/j.envpol.2017.11.070

    Article  CAS  Google Scholar 

  48. S Oberbeckmann B Kreikemeyer M Labrenz 2018 Environmental factors support the formation of specific bacterial assemblages on microplastics Front Microbiol 8 2709 https://doi.org/10.3389/fmicb.2017.02709

    Article  Google Scholar 

  49. HS Auta CU Emenike SH Fauziah 2017 Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation Environ Pollut 231 1552 1559 https://doi.org/10.1016/j.envpol.2017.09.043

    Article  CAS  Google Scholar 

  50. J Yuan J Ma Y Sun T Zhou Y Zhao F Yu 2020 Microbial degradation and other environmental aspects of microplastics/plastics Sci Total Environ 715 136968 https://doi.org/10.1016/j.scitotenv.2020.136968

    Article  CAS  Google Scholar 

  51. R Majed C Faille M Kallassy M Gohar 2016 Bacillus cereus biofilms-same, only different Front Microbiol 7 1054 https://doi.org/10.3389/fmicb.2016.01054

    Article  Google Scholar 

  52. K Zhu CS Hoelzel Y Cui R Mayer Y Wang R Dietrich A Didier R Bassitta E Maertlbauer S Ding 2016 Probiotic Bacillus cereus strains, a potential risk for public health in China Front Microbiol 7 718 https://doi.org/10.3389/fmicb.2016.00718

    Article  Google Scholar 

  53. L Miao P Wang J Hou Y Yao Z Liu S Liu T Li 2019 Distinct community structure and microbial functions of biofilms colonizing microplastics Sci Total Environ 650 2395 2402 https://doi.org/10.1016/j.scitotenv.2018.09.378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number 32071614]; the Starting Research Fund from Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences [grant number Y9519802]; and Funding Project of Sino-Africa Joint Research Center, Chinese Academy of Sciences [grant number E0291P0101].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Weihong Zhang and Yuyi Yang; Methodology: Wenke Yuan and Ying Jiang; Writing- original draft: Weihong Zhang; Visualization: Chen Ye; Software: Lu Chen and Weihong Zhang; Writing- reviewing and editing: Wenke Yuan and Yuyi Yang.

Corresponding author

Correspondence to Yuyi Yang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 725 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yuan, W., Chen, L. et al. Uniqueness and Dependence of Bacterial Communities on Microplastics: Comparison with Water, Sediment, and Soil. Microb Ecol 84, 985–995 (2022). https://doi.org/10.1007/s00248-021-01919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01919-0

Keywords

Navigation