Log in

Comparative Analyses of the Gut Microbiome of Two Fox Species, the Red Fox (Vulpes Vulpes) and Corsac Fox (Vulpes Corsac), that Occupy Different Ecological Niches

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The gut microbiome is integral for the host’s living and environmental adaptation and crucially important for understanding host adaptive mechanisms. The red fox (Vulpes vulpes) dominates a wider ecological niche and more complicated habitat than that of the corsac fox (V. corsac). However, the adaptive mechanisms (in particular, the gut microbiome responsible for this kind of difference) are still unclear. Therefore, we investigated the gut microbiome of these two species in the Hulunbuir grassland, China, and evaluated their microbiome composition, function, and adaptive mechanisms. We profiled the gut microbiome and metabolism function of red and corsac foxes via 16S rRNA gene and metagenome sequencing. The foxes harbored species-specific microbiomes and functions that were related to ecological niche and habitat. The red fox had abundant Bacteroides, which leads to significant enrichment of metabolic pathways (K12373 and K21572) and enzymes related to chitin and carbohydrate degradation that may help the red fox adapt to a wider niche. The corsac fox harbored large proportions of Blautia, Terrisporobacter, and ATP-binding cassette (ABC) transporters (K01990, K02003, and K06147) that can help maintain corsac fox health, allowing it to live in harsh habitats. These results indicate that the gut microbiome of the red and corsac foxes may have different abilities which may provide these species with differing capabilities to adapt to different ecological niches and habitats, thus providing important microbiome data for understanding the mechanisms of host adaptation to different niches and habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

1. The species identification data can be found in the Genbank of NCBI, accession numbers: CH1 (MT795165.1), CH2 (MT795166.1), CH3 (MT795167.1), CH4 (MT795168.1), CH5 (MT795169.1), CH7 (MT795170.1), CH8 (MT795171.1), CH9 (MT795172.1), CH11 (MT795173.1), CH13 (MT795174.1), SH14 (MT795175.1), SH15 (MT795178.1), SH16 (MT795176.1), SH17 (MT795177.1), and SH21 (MT795179.1).

2. The 16S rRNA gene sequencing data can be found in the NCBI Sequence Read Archive database (accession number PRJNA646772).

3. The metagenomics sequencing data can be found in the NCBI Sequence Read Archive database (accession number PRJNA646811).

Code Availability (Software Application or Custom Code)

Applicable.

References

  1. Greene LK, Williams CV, Junge RE, Mahefarisoa KL, Rajaonarivelo T, Rakotondrainibe H, O’Connell TM, Drea CM (2020) A role for gut microbiota in host niche differentiation. ISME J 14:1675–1687. https://doi.org/10.1038/s41396-020-0640-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, Zhang X, Huang H, Bridgewater LC, Jiang Y (2015) The Bamboo-Eating Giant Panda Harbors a Carnivore-Like Gut Microbiota, with Excessive Seasonal Variations. MBio 6(3):e00022–15

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu Q, Wang X, Ding Y, Hu Y, Nie Y, Wei W, Ma S, Yan L, Zhu L, Wei F (2017) Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas. Proc R Soc B Biol Sci 284:20170955

    Google Scholar 

  4. Wei F, Wang X, Wu Q (2015) The giant panda gut microbiome. Trends Microbiol 23:450–452

    CAS  PubMed  Google Scholar 

  5. Roggenbuck M, Schnell IB, Blom N, Baelum J, Bertelsen MF, Sicheritzponten T, Sorensen SJ, Gilbert MTP, Graves GR, Hansen LH (2014) The microbiome of New World vultures. Nat Commun 5:5498

    CAS  PubMed  Google Scholar 

  6. Lyu T, Liu G, Zhang H, Wang L, Zhang H (2018) Changes in feeding habits promoted the differentiation of the composition and function of gut microbiotas between domestic dogs (Canis lupus familiaris) and gray wolves (Canis lupus). AMB Express 8(1):1–12

    Google Scholar 

  7. Swanson KS (2016) 0226 Dietary manipulation of canine and feline gut microbiome. J Anim Sci 94:107–107

    Google Scholar 

  8. Li K, Dan Z, Gesang L, Wang H, Zhou Y, Du Y, Ren Y, Shi Y, Nie Y (2016) Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes. PloS one 11:e0155863

    PubMed  PubMed Central  Google Scholar 

  9. Sun G, Zhang H, Wei Q, Zhao C, Yang X, Wu X, **a T, Liu G, Zhang L, Gao Y (2019) Comparative analyses of fecal microbiota in European mouflon (Ovis orientalis musimon) and blue sheep (Pseudois nayaur) living at low or high altitudes. Front Microbiol 10:1735

    PubMed  PubMed Central  Google Scholar 

  10. Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, Wang W, Qiu Q, Huang X, Zhou J (2016) Convergent evolution of rumen microbiome in high-altitude mammals. Curr Biol 26:1873–1879

    CAS  PubMed  Google Scholar 

  11. Bo T, Zhang X, Wen J, Deng K, Qin X, Wang D (2019) The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt’s voles (Lasiopodomys brandtii). ISME J 13:1–17

    Google Scholar 

  12. Schmidt E, Mykytczuk N, Schulte-Hostedde AI (2019) Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). ISME J 13(5):1293–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Donadio E, Buskirk SW (2006) Diet, morphology, and interspecific killing in Carnivora. Am Nat 167:524–536

    PubMed  Google Scholar 

  14. Murdoch JD, Munkhzul T, Buyandelger S, Reading RP, Sillero-Zubiri C (2010) Seasonal food habits of corsac and red foxes in Mongolia and the potential for competition. Mamm Biol 75(1):36–44

    Google Scholar 

  15. Schoener et al (1974) Resource partitioning in ecological communities. Science 185:27–39

    CAS  PubMed  Google Scholar 

  16. De Leon LF, Podos J, Gardezi T, Herrel A, Hendry AP (2014) Darwin’s finches and their diet niches: the sympatric coexistence of imperfect generalists. J Evol Biol 27:1093–1104

    PubMed  Google Scholar 

  17. Kartzinel TR, Chen P, Coverdale TC, Erickson DL, Kress WJ, Kuzmina M, Rubenstein DI, Wang W, Pringle RM (2015) DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proc Natl Acad Sci USA 112:8019–8024

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Munkhzul T, Murdoch JD, Reading RP (2012) Home range characteristics of corsac and red foxes in Mongolia. University of Nebraska. https://digitalcommons.unl.edu/biolmongol/12

  19. Saiful AA, Idris AH, Rashid YN, Tamura N, Hayashi F (2001) Home range size of sympatric squirrel species inhabiting a lowland dipterocarp forest in Malaysia. Biotropica 33:346–351

    Google Scholar 

  20. Murdoch JD, Munkhzul T, Buyandelger S, Reading RP (2009) Body size and sexual dimorphism among a population of corsac and red foxes in central Mongolia. Mammalia 73(1):72–75

    Google Scholar 

  21. 张洪海, 窦华山, 翟红昌, 吴牧仁 (2006) 三种犬科动物春季洞穴特征. 生态学报: 3980–3988. http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=1000-0933200612-3980-09

  22. Lalitha S (2000) Primer Premier 5. Biotech Softw Internet Rep 1:270–272

    Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  24. Singh A, Rai A, Tripathi G, Nand V, Gupta N, Srivastava K (2019) Development of species-specific polymerase chain reaction (PCR) targeting on mitochondrial D-loop for identification of buffalo and goat raw meat. J Biol Eng Res Rev 6:01–04

    CAS  Google Scholar 

  25. Anabalón L, Encina-Montoya F, Sánchez P, Solano J, Benavente F, Guiñez B, Olivares F, Oberti C, Vega R (2019) High-resolution melting of the cytochrome B gene in fecal DNA: a powerful approach for fox species identification of the Lycalopex genus in Chile. Ecol Evol 9:7448–7454

    PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

  27. Karschmizrachi I, Ouellette BF (1998) The GenBank sequence database. Methods Biochem Anal 39:16

    Google Scholar 

  28. Wu X, Zhang H, Chen J, Shang S, Yan J, Chen Y, Tang X, Zhang H (2017) Analysis and comparison of the wolf microbiome under different environmental factors using three different data of Next Generation Sequencing. Sci Rep 7:11332

    PubMed  PubMed Central  Google Scholar 

  29. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504

    CAS  PubMed  PubMed Central  Google Scholar 

  32. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  35. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5:e1000352

    PubMed  PubMed Central  Google Scholar 

  36. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103

    CAS  PubMed  Google Scholar 

  37. Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Backhed F, Nielsen J (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245–1245

    PubMed  Google Scholar 

  38. Luo R, Liu B, **e Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:30–30

    Google Scholar 

  39. Kanehisa M, Goto S, Hattori M, Aokikinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:354–357

    Google Scholar 

  40. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Google Scholar 

  41. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu X, Zhang H, Chen J, Shang S, Wei Q, Yan J, Tu X (2016) Comparison of the fecal microbiota of dholes high-throughput Illumina sequencing of the V3–V4 region of the 16S rRNA gene. Appl Microbiol Biotechnol 100:3577–3586. https://doi.org/10.1007/s00253-015-7257-y

    Article  CAS  PubMed  Google Scholar 

  43. Wu X, Shang Y, Wei Q, Chen J, Zhang H, Chen Y, Gao X, Wang Z, Zhang H (2020) Gut microbiota in dholes during estrus. Front Microbiol 11:3044. https://doi.org/10.3389/fmicb.2020.575731

    Article  Google Scholar 

  44. Rajilicstojanovic M, De Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047

    CAS  Google Scholar 

  45. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bloemen JG, Venema K, De Poll MCGV, Damink SWMO, Buurman WA, Dejong CHC (2009) Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin Nutr 28:657–661

    CAS  PubMed  Google Scholar 

  47. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut microbes 3:289–306

    PubMed  PubMed Central  Google Scholar 

  48. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413. https://doi.org/10.1038/nrmicro2578

    Article  CAS  PubMed  Google Scholar 

  49. Munoztamayo R, Laroche B, Walter E, Dore J, Duncan SH, Flint HJ, Leclerc M (2011) Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 76:615–624

    CAS  Google Scholar 

  50. Cook SI, Sellin JH (1998) Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther 12:499–507

    CAS  PubMed  Google Scholar 

  51. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey FE, Wang T (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410–4415

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert J, Szeto D, Yao X, Forrest G (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS One 7(4):e35240

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Clarke VA, Platt N, Butters TD (1995) Cloning and expression of the β-N-acetylglucosaminidase gene from Streptococcus pneumoniae: generation of truncated enzymes with modified aglycon specificity. J Biol Chem 270(15):8805–8814

    CAS  PubMed  Google Scholar 

  54. Ormerod KL, Wood DL, Lachner N, Gellatly SL, Daly J, Parsons J, Dalmolin CGDO, Palfreyman RW, Nielsen LK, Cooper ME (2016) Genomic characterization of the uncultured Bacteroidales family S24–7 inhabiting the guts of homeothermic animals. Microbiome 4:36–36

    PubMed  PubMed Central  Google Scholar 

  55. Reeves AR, Wang GR, Salyers AA (1997) Reeves AR, Wang G-R, Salyers AA. Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179: 643–649. J Bacteriol 179:643–649

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tuson HH, Foley MH, Koropatkin NM, Biteen JS (2018) The starch utilization system assembles around stationary starch-binding proteins. Biophys J 115(2):242–250

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mcnulty NP, Wu M, Erickson AR, Pan C, Erickson BK, Martens EC, Pudlo NA, Muegge BD, Henrissat B, Hettich RL (2013) Effects of diet on resource utilization by a model human gut microbiota containing bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol 11(8):e1001637

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Murdoch JD, Buyandelger S, Cypher BL (2009) Patterns of seed occurrence in corsac and red fox diets in Mongolia. J Arid Environ 73:381–384

    Google Scholar 

  59. Delsuc F, Metcalf JL, Parfrey LW, Song SJ, Gonzalez A, Knight R (2014) Convergence of gut microbiome in myrmecophagous mammals. Mol Ecol 23:1301–1317

    CAS  PubMed  Google Scholar 

  60. Whitaker JO, Dannelly HK, Prentice DA (2004) Chitinase in insectivorous bats. J Mammal 85:15–18

    Google Scholar 

  61. Hiscocks K, Perrin M (1987) Feeding observations and diet of black-backed jackals in an arid coastal environment. S Afr J Wildl Res 17:55–58

    Google Scholar 

  62. Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495:360–364

    CAS  PubMed  Google Scholar 

  63. Scott KP, Martin JC, Duncan SH, Flint HJ (2014) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 87:30–40

    CAS  PubMed  Google Scholar 

  64. Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 2(72):re3-re3

  65. Hugenholtz F (2015) Mouse gut microbiomics of short chain fatty acid metabolism and mucosal responses. Doctoral dissertation, Wageningen University. https://library.wur.nl/WebQuery/wurpubs/482512

  66. Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W (2021) Blautia—a new functional genus with potential probiotic properties? Gut Microbes 13:1–21

    PubMed  Google Scholar 

  67. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, Littmann ER, Ling L, Gobourne AC, Miller LC (2015) Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant 21:1373–1383

    PubMed  PubMed Central  Google Scholar 

  68. Xu S, Dong Y, Shi J, Li Z, Che L, Lin Y, Li J, Feng B, Fang Z, Yong Z, Wang J, Wu D (2021) Responses of vaginal microbiota to dietary supplementation with lysozyme and its relationship with rectal microbiota and sow performance from late gestation to early lactation. Animals 11:593

    PubMed  PubMed Central  Google Scholar 

  69. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systemS. Microbiol Mol Biol Rev 72:317–364

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Qi C, Ding M, ** with fecal sample collection. We thank our mentors for their guidance in experiments and writing.

Funding

This work was supported by the Special Fund for Forest Scientific Research in the Public Welfare (201404420) and the National Natural Science Foundation of China (31872242, 32070405, 32001228, 32000291, 61902368).

Author information

Authors and Affiliations

Authors

Contributions

HhZ, XbW, and QgW conceived and designed the study. XbW, YqS, XyW, WlS, HxZ, and ScM performed the research. XbW, HsD, SyZ, and GlS analyzed the data. XbW prepared the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Honghai Zhang.

Ethics declarations

Ethics Approval (Include Appropriate Approvals or Waivers)

Applicable.

Consent to Participate (Include Appropriate Statements)

Applicable.

Consent for Publication (Include Appropriate Statements)

Applicable.

Competing Interests

The authors declare no competing interests.

Additional information

**bao Wang and Yongquan Shang shared first authorship

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 803 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Shang, Y., Wei, Q. et al. Comparative Analyses of the Gut Microbiome of Two Fox Species, the Red Fox (Vulpes Vulpes) and Corsac Fox (Vulpes Corsac), that Occupy Different Ecological Niches. Microb Ecol 83, 753–765 (2022). https://doi.org/10.1007/s00248-021-01806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01806-8

Keywords

Navigation