Log in

Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist

  • Contrast-enhanced ultrasound (CEUS) in children
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The ability to provide prompt, real-time, easily accessible and radiation-free diagnostic assessments makes ultrasound (US) one of the most versatile imaging modalities. The introduction and development of stable microbubble-based ultrasound contrast agents (UCAs) in the early 1990s improved visualization of complex vascular structures, overcoming some of the limitations of B-mode and Doppler imaging. UCAs have been used extensively in the adult population to visualize vasculature and to evaluate perfusion and blood flow dynamics in organs and lesions. Since the first observations that air bubbles within a liquid can generate a strong echogenic effect, to the early makeshift approaches with agitated saline, and later to the development of industrially produced and federally approved UCAs, these agents have evolved to become both clinically and commercially viable. Perhaps the most exciting potential of UCAs is being uncovered by current research that explores the use of these agents for molecular imaging and therapeutic applications. As contrast-enhanced ultrasound (CEUS) becomes more widely available, it is important for pediatric radiologists to understand the physics of the interaction between the US signal and the microbubbles in order to properly utilize them for the highest level of diagnostic imaging and interventions. In this article we introduce the composition of UCAs and the physics of their behavior in US, and we offer a brief history of their development over the last decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merritt CRB (2018) Physics of ultrasound. In: Rumack CM (ed) Diagnostic ultrasound, 5th edn. Elsevier, Philadelphia, pp 1–33

    Google Scholar 

  2. Martin K, Ramnarine K (2010) Physics. In: Hoskins PR, Martin K, Thrush A (eds) Diagnostic ultrasound: physics and equipment. Cambridge University Press, Cambridge

    Google Scholar 

  3. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Investig Radiol 3:356–366

    Article  CAS  Google Scholar 

  4. Ziskin MC, Bonakdarpour A, Weinstein DP, Lynch PR (1972) Contrast agents for diagnostic ultrasound. Investig Radiol 7:500–505

    Article  CAS  Google Scholar 

  5. Gramiak R, Shah PM, Kramer DH (1969) Ultrasound cardiography: contrast studies in anatomy and function. Radiology 92:939–948

    Article  CAS  PubMed  Google Scholar 

  6. Balen FG, Allen CM, Lees WR (1994) Ultrasound contrast agents. Clin Radiol 49:77–82

    Article  CAS  PubMed  Google Scholar 

  7. Nanda NC (1997) History of echocardiographic contrast agents. Clin Cardiol 20:17–11

    Article  Google Scholar 

  8. Burns PN, Wilson SR (2006) Microbubble contrast for radiological imaging: 1. Principles. Ultrasound Q 22:5–13

    PubMed  Google Scholar 

  9. Burns PN (2018) Contrast agents for ultrasound. In: Rumack CM (ed) Diagnostic ultrasound, 5th edn. Elsevier, Philadelphia, pp 53–73

    Google Scholar 

  10. Eisenbrey J (2019) Ultrasound contrast agents: Optison. In: Lyshchik A (ed) Specialty imaging: fundamentals of CEUS. Elsevier, Philadelphia, pp 120–123

    Google Scholar 

  11. Eisenbrey J, Hilaire L (2019) Ultrasound contrast agents: Definity. In: Lyshchik A (ed) Specialty imaging: fundamentals of CEUS. Elsevier, Philadelphia, pp 116–119

    Google Scholar 

  12. Eisenbrey J, Greis C (2019) Ultrasound contrast agents: Lumason/SonoVue. In: Lyshchik A (ed) Specialty imaging: fundamentals of CEUS. Elsevier, Philadelphia, pp 110–115

    Google Scholar 

  13. Moran CM (2011) Ultrasonic contrast agents. In: Allan PL, Baxter GM, Weston MJ (eds) Clinical ultrasound, 3rd edn. Churchill Livingstone, Edinburgh, pp 77–89

    Chapter  Google Scholar 

  14. Forsberg F, Averkiou M, Eisenbrey J (2019) Physical principles of CEUS. In: Lyshchik A (ed) Specialty imaging: fundamentals of CEUS. Elsevier, Philadelphia, pp 92–97

    Google Scholar 

  15. Frinking P, Segers T, Luan Y, Tranquart F (2020) Three decades of ultrasound contrast agents: a review of the past, present and future improvements. Ultrasound Med Biol 46:892–908

    Article  PubMed  Google Scholar 

  16. Paefgen V, Doleschel D, Kiessling F (2015) Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 6:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Faez T, Emmer M, Kooiman K et al (2013) 20 years of ultrasound contrast agent modeling. IEEE Trans Ultrason Ferroelectr Freq Control 60:7–20

    Article  PubMed  Google Scholar 

  18. Bove AA, Adams DF, Hugh AE, Lynch PR (1968) Cavitation at catheter tips: a possible cause of air embolus. Investig Radiol 3:159–164

    Article  CAS  Google Scholar 

  19. Kremkau FW, Gramiak R, Carstensen EL et al (1970) Ultrasonic detection of cavitation at catheter tips. Am J Roentgenol Radium Therapy, Nucl Med 110:177–183

    Article  CAS  Google Scholar 

  20. Ophir J, Parker KJ (1989) Contrast agents in diagnostic ultrasound. Ultrasound Med Biol 15:319–333

    Article  CAS  PubMed  Google Scholar 

  21. Ophir J, Gobuty A, McWhirt RE, Maklad NF (1980) Ultrasonic backscatter from contrast producing collagen microspheres. Ultrason Imaging 2:67–77

    Article  CAS  PubMed  Google Scholar 

  22. Calliada F, Campani R, Bottinelli O et al (1998) Ultrasound contrast agents: basic principles. Eur J Radiol 27:S157–S160

    Article  PubMed  Google Scholar 

  23. Feinstein SB, Heidenreich PA, Dick CD et al (1988) Albunex: a new intravascular ultrasound contrast agent: preliminary safety and efficacy results. Circulation 78:565

    Google Scholar 

  24. Jablonski EG, Dittrich HC, Bartlett JM, Podell SB (1998) Ultrasound contrast agents: the advantage of albumin microsphere technology. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation: volume 17A. Springer US, Boston, pp 15–22

    Chapter  Google Scholar 

  25. Feinstein SB, Cheirif J, Ten Cate FJ et al (1990) Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J Am Coll Cardiol 16:316–324

    Article  CAS  PubMed  Google Scholar 

  26. Correas JM, Bridal L, Lesavre A et al (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11:1316–1328

    Article  CAS  PubMed  Google Scholar 

  27. Schlief R, Schurman R, Niendorf HP (1993) Basic properties and results of clinical trials of ultrasound contrast agents based on galactose. Ann Acad Med Singap 22:762–767

    CAS  PubMed  Google Scholar 

  28. Schurmann R, Schlief R (1994) Saccharide-based contrast agents. Characteristics and diagnostic potential. Radiol Med 87:15–23

    CAS  PubMed  Google Scholar 

  29. No authors (2011) Definity. Highlights of prescribing information. Online document. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021064s011lbl.pdf. Accessed 23 Mar 2021

  30. GE Healthcare (2016) Optison. Highlights of prescribing information. Online document. http://www3.gehealthcare.com/~/media/documents/MarketoPDFsnogating/OPT-1H-OSLO_Optison_BK. Accessed 23 Mar 2021

  31. Sirsi S, Borden M (2009) Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 1:3–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bracco (2020) Lumason. https://imaging.bracco.com/sites/braccoimaging.com/files/technica_sheet_pdf/us-en-2020-01-15-spc-lumason.pdf. Accessed 23 Mar 2021

  33. Lee JY, Minami Y, Choi BI et al (2020) The AFSUMB consensus statements and recommendations for the clinical practice of contrast-enhanced ultrasound using Sonazoid. J Med Ultrasound 28:59–82

    PubMed  PubMed Central  Google Scholar 

  34. Shi WT, Forsberg F, Hall AL et al (1999) Subharmonic imaging with microbubble contrast agents: initial results. Ultrason Imaging 21:79–94

    Article  CAS  PubMed  Google Scholar 

  35. Qin S, Caskey CF, Ferrara KW (2009) Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 54:R27–R57

    Article  PubMed  PubMed Central  Google Scholar 

  36. Forsberg F, Gupta I, Machado P et al (2020) Contrast-enhanced subharmonic aided pressure estimation (SHAPE) using ultrasound imaging with a focus on identifying portal hypertension. J Vis Exp. https://doi.org/10.3791/62050

  37. Chong WK, Papadopoulou V, Dayton PA (2018) Imaging with ultrasound contrast agents: current status and future. Abdom Radiol 43:762–772

    Article  Google Scholar 

  38. Starkoff B (2014) Ultrasound physical principles in today’s technology. Australas J Ultrasound Med 17:4–10

    Article  PubMed  Google Scholar 

  39. Dave JK, Halldorsdottir VG, Eisenbrey JR et al (2012) Noninvasive LV pressure estimation using subharmonic emissions from microbubbles. JACC Cardiovasc Imaging 5:87–92

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eisenbrey JR, Dave JK, Halldorsdottir VG et al (2013) Chronic liver disease: noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient. Radiology 268:581–588

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gupta I, Eisenbrey JR, Machado P et al (2021) Diagnosing portal hypertension with noninvasive subharmonic pressure estimates from a US contrast agent. Radiology 298:104–111

    Article  PubMed  Google Scholar 

  42. Nam K, Eisenbrey JR, Stanczak M et al (2017) Monitoring neoadjuvant chemotherapy for breast cancer by using three-dimensional subharmonic aided pressure estimation and imaging with US contrast agents: preliminary experience. Radiology 285:53–62

    Article  PubMed  Google Scholar 

  43. Sennoga CA, Yeh JSM, Alter J et al (2012) Evaluation of methods for sizing and counting of ultrasound contrast agents. Ultrasound Med Biol 38:834–845

    Article  PubMed  PubMed Central  Google Scholar 

  44. Feshitan JA, Chen CC, Kwan JJ, Borden MA (2009) Microbubble size isolation by differential centrifugation. J Colloid Interface Sci 329:316–324

    Article  CAS  PubMed  Google Scholar 

  45. Sennoga CA, Mahue V, Loughran J et al (2010) On sizing and counting of microbubbles using optical microscopy. Ultrasound Med Biol 36:2093–2096

    Article  PubMed  Google Scholar 

  46. Segers T, de Jong N, Versluis M (2016) Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: modeling and experiments. J Acoust Soc Am 140:2506

    Article  PubMed  Google Scholar 

  47. Guvener N, Appold L, de Lorenzi F et al (2017) Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods 130:4–13

    Article  PubMed  CAS  Google Scholar 

  48. Kripfgans OD, Fowlkes JB, Miller DL et al (2000) Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 26:1177–1189

    Article  CAS  PubMed  Google Scholar 

  49. Matsunaga TO, Sheeran PS, Luois S et al (2012) Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2:1185–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheeran PS, Luois S, Dayton PA, Matsunaga TO (2011) Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 27:10412–10420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sheeran PS, Rojas JD, Puett C et al (2015) Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents. Ultrasound Med Biol 41:814–831

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang G, Harput S, Hu H et al (2019) Fast acoustic wave sparsely activated localization microscopy (fast-AWSALM): ultrasound super-resolution using plane-wave activation of nanodroplets. IEEE Trans Ultrason Ferroelectr Freq Control 66:1039–1046

    Article  Google Scholar 

  53. Domenici F, Brasili F, Oddo L et al (2019) Long-term physical evolution of an elastomeric ultrasound contrast microbubble. J Colloid Interface Sci 540:185–196

    Article  CAS  PubMed  Google Scholar 

  54. Brown E, Lindner JR (2019) Ultrasound molecular imaging: principles and applications in cardiovascular medicine. Curr Cardiol Rep 21:30

    Article  PubMed  Google Scholar 

  55. Lindner JR (2004) Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 11:215–221

    Article  PubMed  Google Scholar 

  56. Dimcevski G, Kotopoulis S, Bjanes T et al (2016) A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 243:172–181

    Article  CAS  PubMed  Google Scholar 

  57. Eisenbrey JR, Forsberg F, Wessner CE et al (2021) US-triggered microbubble destruction for augmenting hepatocellular carcinoma response to transarterial radioembolization: a randomized pilot clinical trial. Radiology 298:450–457

    Article  PubMed  Google Scholar 

  58. Slikkerveer J, Kleijn SA, Appelman Y et al (2012) Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the Sonolysis study. Ultrasound Med Biol 38:247–252

    Article  PubMed  Google Scholar 

  59. Wang Y, Li Y, Yan K et al (2018) Clinical study of ultrasound and microbubbles for enhancing chemotherapeutic sensitivity of malignant tumors in digestive system. Chin J Cancer Res 30:553–563

    Article  PubMed  PubMed Central  Google Scholar 

  60. El Kadi S, Porter TR, van Rossum AC, Kamp O (2020) Sonothrombolysis in the ambulance for ST-elevation myocardial infarction: rationale and protocol. Neth Heart J. https://doi.org/10.1007/s12471-020-01516-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anush Sridharan.

Ethics declarations

Conflicts of interest

Dr. Eisenbrey has received grant support and speaker fees from Lantheus Medical Imaging, equipment support from Siemens, and grant and equipment support from GE Healthcare. Dr. Forsberg has received equipment support from GE Healthcare, Siemens, Canon and Butterfly; UCA support from Lantheus, GE Healthcare and Bracco; and is a consultant for Samumed and Exact Therapeutics.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridharan, A., Eisenbrey, J.R., Forsberg, F. et al. Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist. Pediatr Radiol 51, 2117–2127 (2021). https://doi.org/10.1007/s00247-021-05080-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05080-1

Keywords

Navigation