Log in

Impact of Copper Nanoparticles and Copper Ions on Transcripts Involved in Neural Repair Mechanisms in Rainbow Trout Olfactory Mucosa

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Olfactory mucosa is well known for its lifelong ability for regeneration. Regeneration of neurons and regrowth of severed axons are the most common neural repair mechanisms in olfactory mucosa. Nonetheless, exposure to neurotoxic contaminants, such as copper nanoparticles (CuNPs) and copper ions (Cu2+), may alter the reparative capacity of olfactory mucosa. Here, using RNA-sequencing, we investigated the molecular basis of neural repair mechanisms that were affected by CuNPs and Cu2+ in rainbow trout olfactory mucosa. The transcript profile of olfactory mucosa suggested that regeneration of neurons was inhibited by CuNPs. Exposure to CuNPs reduced the transcript abundances of pro-inflammatory proteins which are required to initiate neuroregeneration. Moreover, the transcript of genes encoding regeneration promoters, including canonical Wnt/β-catenin signaling proteins and developmental transcription factors, were downregulated in the CuNP-treated fish. The mRNA levels of genes regulating axonal regrowth, including the growth-promoting signals secreted from olfactory ensheathing cells, were mainly increased in the CuNP treatment. However, the reduced transcript abundances of a few cell adhesion molecules and neural polarity genes may restrict axonogenesis in the CuNP-exposed olfactory mucosa. In the Cu2+-treated olfactory mucosa, both neural repair strategies were initiated at the transcript level. The stimulation of repair mechanisms can lead to the recovery of Cu2+-induced olfactory dysfunction. These results indicated CuNPs and Cu2+ differentially affected the neural repair mechanism in olfactory mucosa. Exposure to CuNP had greater effects on the expression of genes involved in olfactory repair mechanisms relative to Cu2+ and dysregulated the transcripts associated with stem cell proliferation and neural reconstitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank the University of Lethbridge Aquatic Research facility staff Dr. Shamsuddin Mamun and Holly Shepherd for taking care of study fish.

Funding

The current study was supported by an NSERC Discovery Grant (# RGPIN-2015–04492) and a Campus Alberta Innovation Program (CAIP) research chair to GGP.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PR. The first draft of the manuscript was written by PR, and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Parastoo Razmara.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmara, P., Pyle, G.G. Impact of Copper Nanoparticles and Copper Ions on Transcripts Involved in Neural Repair Mechanisms in Rainbow Trout Olfactory Mucosa. Arch Environ Contam Toxicol 84, 18–31 (2023). https://doi.org/10.1007/s00244-022-00969-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-022-00969-w

Navigation