Log in

Abnormal static and dynamic functional connectivity of networks related to cognition in patients with subcortical ischemic vascular disease

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the specific features of static functional connectivity (SFC) and dynamic functional connectivity (DFC) of networks related to cognition in patients with subcortical ischemic vascular disease (SIVD).

Methods

In this retrospective study, resting-state functional MRI data and a series of cognitive scores were obtained from 38 patients with SIVD and 23 normal controls. Independent component analysis, sliding window method, k-means clustering analysis and graph theory method were used to examine FC between the default mode network (DMN), dorsal attention network (DAN), frontoparietal network (FPN), salience network (SN) and executive control network (ECN) in patients with SIVD. Then, correlations between abnormal FC features and cognition were assessed.

Results

Compared with normal controls, SFC within the DMN significantly increased and SFC between the DMN and DAN significantly decreased in patients with SIVD. The decreased DFC mainly occurred in weakly connected states, especially the DFC of the SN; but the increased DFC, global network efficiency and local network efficiency and the decreased mean dwell time (MDT) and frequency mainly occurred in strongly connected states in SIVD patients. Moreover, aberrant SFC, DFC and MDT were significantly correlated with patients’ cognitive scores.

Conclusion

The overall results are suggestive of abnormal functional segregation and integration of SFC and DFC among networks related to cognition, especially in the SN. This may advance our comprehensive understanding of the abnormal changes in brain network connectivity in patients with SIVD. Our findings also highlight DFC may be an effective neuroimaging marker for the clinical diagnosis of SIVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Román GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC (2002) Subcortical ischaemic vascular dementia. Lancet Neurol 1(7):426–436

    Article  PubMed  Google Scholar 

  2. Charlton RA, Morris RG, Nitkunan A, Markus HS (2006) The cognitive profiles of CADASIL and sporadic small vessel disease. Neurology 66(10):1523–1526

    Article  CAS  PubMed  Google Scholar 

  3. Sachdev P, Kalaria R, O’Brien J, Skoog I, Alladi S, Black SE et al (2014) Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord 28(3):206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wallin A, Roman GC, Esiri M, Kettunen P, Svensson J, Paraskevas GP et al (2018) Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease. J Alzheimers Dis 62(3):1417–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ye Q, Bai F (2018) Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment. Stroke Vasc Neurol 3(3):131–139

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang R, Liu N, Tao YY, Gong XQ, Zheng J, Yang C et al (2020) The Application of rs-fMRI in Vascular Cognitive Impairment. Front Neurol 11:951

    Article  PubMed  PubMed Central  Google Scholar 

  7. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei Y, de Lange S, Scholtens L, Watanabe K, Ardesch D, Jansen P et al (2019) Genetic map** and evolutionary analysis of human-expanded cognitive networks. Nat Commun 10(1):4839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schulz M, Malherbe C, Cheng B, Thomalla G, Schlemm E (2021) Functional connectivity changes in cerebral small vessel disease - a systematic review of the resting-state MRI literature. BMC Med 19(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  10. Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012) Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33(8):1564–1578

    Article  PubMed  Google Scholar 

  11. Dey AK, Stamenova V, Turner G, Black SE, Levine B (2016) Pathoconnectomics of cognitive impairment in small vessel disease: A systematic review. Alzheimers Dement 12(7):831–845

    Article  PubMed  Google Scholar 

  12. Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, de Leeuw FE (2018) Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol 14(7):387–398

    Article  PubMed  Google Scholar 

  13. Fu X, Liu F, Cui Z, Guo W (2020) Editorial dynamic functional connectivity in neuropsychiatric disorders: methods and applications. Front Neurosci 14:332

    Article  PubMed  PubMed Central  Google Scholar 

  14. Christiaen E, Goossens MG, Descamps B, Larsen LE, Boon P, Raedt R et al (2020) Dynamic functional connectivity and graph theory metrics in a rat model of temporal lobe epilepsy reveal a preference for brain states with a lower functional connectivity, segregation and integration. Neurobiol Dis 139:104808

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Wang C, Miao P, Liu J, Wei Y, Wu L et al (2020) An imbalance between functional segregation and integration in patients with pontine stroke: a dynamic functional network connectivity study. Neuroimage Clin 28:102507

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tu Y, Fu Z, Zeng F, Maleki N, Lan L, Li Z et al (2019) Abnormal thalamocortical network dynamics in migraine. Neurology 92(23):e2706–e2716

    Article  PubMed  PubMed Central  Google Scholar 

  17. Espinoza FA, Liu J, Ciarochi J, Turner JA, Vergara VM, Caprihan A et al (2019) Dynamic functional network connectivity in Huntington’s disease and its associations with motor and cognitive measures. Hum Brain Mapp 40(6):1955–1968

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fu Z, Caprihan A, Chen J, Du Y, Adair JC, Sui J et al (2019) Altered static and dynamic functional network connectivity in Alzheimer’s disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum Brain Mapp 40(11):3203–3221

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li K, Fu Z, Luo X, Zeng Q, Huang P, Zhang MM et al (2020) The influence of cerebral small vessel disease on static and dynamic functional network connectivity in subjects along Alzheimer’s disease continuum. Brain Connect 11:189–200

    Article  Google Scholar 

  20. Kim J, Criaud M, Cho SS, Diez-Cirarda M, Mihaescu A, Coakeley S et al (2017) Abnormal intrinsic brain functional network dynamics in Parkinson’s disease. Brain 140(11):2955–2967

    Article  PubMed  PubMed Central  Google Scholar 

  21. Calhoun V, Adali T, Pearlson G, Pekar J (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rachakonda S, Silva R, Liu J, Calhoun V (2016) Memory efficient PCA methods for large group ICA. Front Neurosci 10:17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Himberg J, Hyvarinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22(3):1214–1222

    Article  PubMed  Google Scholar 

  24. Bugli C, Lambert P (2007) Comparison between principal component analysis and independent component analysis in electroencephalograms modelling. Biomet J Biomet Zeitschrift 49(2):312–327

    Article  CAS  PubMed  Google Scholar 

  25. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2

    PubMed  PubMed Central  Google Scholar 

  26. Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH et al (2014) Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin 5:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schumacher J, Peraza LR, Firbank M, Thomas AJ, Kaiser M, Gallagher P et al (2019) Dynamic functional connectivity changes in dementia with Lewy bodies and Alzheimer’s disease. Neuroimage Clin 22:101812

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y et al (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342

    Article  PubMed  Google Scholar 

  29. Hashmi JA, Loggia ML, Khan S, Gao L, Kim J, Napadow V et al (2017) Dexmedetomidine disrupts the local and global efficiencies of large-scale brain networks. Anesthesiology 126(3):419–430

    Article  CAS  PubMed  Google Scholar 

  30. Liu R, Wu W, Ye Q, Gu Y, Zou J, Chen X et al (2019) Distinctive and pervasive alterations of functional brain networks in cerebral small vessel disease with and without cognitive impairment. Dement Geriatr Cogn Disord 47:55–67

    Article  PubMed  Google Scholar 

  31. Shaw EE, Schultz AP, Sperling RA, Hedden T (2015) Functional connectivity in multiple cortical networks is associated with performance across cognitive domains in older adults. Brain Connect 5(8):505–516

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25(1):74–86

    Article  PubMed  Google Scholar 

  33. Chen H, Li Y, Liu Q, Shi Q, Wang J, Shen H et al (2019) Abnormal interactions of the salience network, central executive network, and default-mode network in patients with different cognitive impairment loads caused by leukoaraiosis. Front Neur Circ 13:42

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Wang J, Zhang J, Zhang T, Chen K, Fleisher A et al (2014) Aberrant functional networks connectivity and structural atrophy in silent lacunar infarcts: relationship with cognitive impairments. J Alzheimers Dis 42(3):841–850

    Article  PubMed  Google Scholar 

  35. Yi L, Wang J, Jia L, Zhao Z, Lu J, Li K et al (2012) Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study. PLoS One 7(9):e44758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Chen L, Cheng R, Luo T, Lv F, Fang W et al (2019) Altered functional connectivity in patients with subcortical ischemic vascular disease: A resting-state fMRI study. Brain Res 1715:126–133

    Article  CAS  PubMed  Google Scholar 

  37. Rashid B, Damaraju E, Pearlson GD, Calhoun VD (2014) Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Front Hum Neurosci 8:897

    Article  PubMed  PubMed Central  Google Scholar 

  38. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676

    Article  PubMed  Google Scholar 

  39. Di X, Biswal BB (2014) Modulatory interactions between the default mode network and task positive networks in resting-state. PeerJ 2:e367

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goulden N, Khusnulina A, Davis NJ, Bracewell RM, Bokde AL, McNulty JP et al (2014) The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage 99:180–190

    Article  PubMed  Google Scholar 

  41. He X, Qin W, Liu Y, Zhang X, Duan Y, Song J et al (2014) Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp 35(7):3446–3464

    Article  PubMed  Google Scholar 

  42. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barulli D, Stern Y (2013) Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 17(10):502–509

    Article  PubMed  Google Scholar 

  44. Steffener J, Brickman AM, Rakitin BC, Gazes Y, Stern Y (2009) The impact of age-related changes on working memory functional activity. Brain Imaging Behav 3(2):142–153

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the study participants.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 81671666). National Natural Science Foundation of China, 81671666, Tianyou Luo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyou Luo.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Cheng, R., Liu, X. et al. Abnormal static and dynamic functional connectivity of networks related to cognition in patients with subcortical ischemic vascular disease. Neuroradiology 64, 1201–1211 (2022). https://doi.org/10.1007/s00234-022-02895-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-022-02895-z

Keywords

Navigation