Log in

Influence of rotating magnetic field strength on three-dimensional thermocapillary flow in a floating half-zone model

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of rotating magnetic field (RMF) on the three-dimensional thermocapillary flow of semiconductor melt (Pr = 0.01) in a floating half-zone model under microgravity are investigated numerically by the finite volume method. The results indicate that the thermocapillary flow without magnetic field is a steady three-dimensional convection for Ma = 40 in a floating half-zone model with As = 1, and the convection evolves to an oscillatory three-dimensional flow by applying 1–6 mT RMF with 50 Hz rotating frequency. Based on the fast Fourier transform spectrum, the convection is confirmed to be a periodically oscillating flow, the oscillatory main frequency, 1.59 × 10−3 Hz for 1 mT RMF and 5.84 × 10−2 Hz for 6 mT RMF, increases with the magnetic strength. However, with increasing the magnetic field strength up to 7 mT, the three-dimensional thermocapillary flow is effectively controlled and the convection turns into a steady axisymmetrical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

As:

Aspect ratio (=H/R)

B 0 :

Amplitude of RMF

\( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {f} }}_{{\hbox {rot}}}^{*} \) :

Dimensionless Lorentz force

\( f_{x}^{*} \) :

Dimensionless component of the Lorentz force in the x direction

\( f_{y}^{*} \) :

Dimensionless component of the Lorentz force in the y direction

\( f_{z}^{*} \) :

Dimensionless component of the Lorentz force in the z direction

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {\text {F}_{{\text s}}^{*} }\) :

Dimensionless surface tension

H :

Height of the liquid bridge

k :

Thermal diffusion coefficient

Ma:

Marangoni number \( \left(={\frac{{\sigma_{k} \Updelta TH}}{\rho \upsilon k}} \right) \)

P* :

Dimensionless pressure

Pr:

Prandtl number (=υ/k)

R :

Radius of the liquid bridge

Reω :

Rotation magnetic Reynolds number \( ( ={{\omega H^{2} } \mathord{\left/ {\vphantom {{\omega H^{2} } \upsilon }} \right. \kern-\nulldelimiterspace} \upsilon }) \)

T :

Temperature

T * :

Dimensionless temperature

\( T_{\text{top}} \) :

Temperature of the top disc

T bottom :

Temperature of the bottom disc

t * :

Dimensionless time

Ta:

Taylor number \( (=\frac{{\sigma_{e} B_{0}^{2} \omega H^{4} }}{2\upsilon \mu }) \)

\( {\mathbf{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {U} }}^{*} \) :

Dimensionless velocity vector

\( u^{*} \) :

Dimensionless velocity component in the x direction

v * :

Dimensionless velocity component in the y direction

w * :

Dimensionless velocity component in the z direction

α :

Skin depth

δ :

Kronecker operator

λ:

Rotating frequency of RMF

μ :

Dynamic viscosity

υ :

Kinematic viscosity

ρ:

Density

σ:

Surface tension

σe :

Electrical conductivity

σ0 :

Surface tension in the reference temperature

σ k :

Surface tension coefficient

ϕ :

Electric potential

ϕ * :

Dimensionless electric potential

ω :

Rotating angular frequency

References

  1. Levenstam M, Amberg G (1995) Hydrodynamical instabilities of thermocapillary flow in a half-zone. J Fluid Mech 297:357–372

    Article  MathSciNet  MATH  Google Scholar 

  2. Kuhlmann H (1999) Thermocapillary convection in models of crystal growth. Springer, Berlin

    Google Scholar 

  3. Yao L, Zeng Z, Li X, et al (2011) Effects of rotating magnetic fields on thermocapillary flow in a floating half-zone. 316:177–184

  4. Bazzi H, Nguyen C, Galanis N (2001) Numerical study of the unstable thermocapillary flow in a silicon float zone under μ–g condition. Int J Therm Sci 40:702–716

    Article  Google Scholar 

  5. Imaishi N, Yasuhiro S, Akiyama Y et al (2001) Numerical simulation of oscillatory Marangoni flow in half-zone liquid bridge of low Prandtl number fluid. J Cryst Growth 230:164–171

    Article  Google Scholar 

  6. Rupp R, Müller G, Neuman G (2001) Three-dimensional time dependent modeling of the Marangoni convection in zone melting configuration for GaAs. J Cryst Growth 97:34–41

    Article  Google Scholar 

  7. Barz RU, Gerbeth G, Wunderwald U (1997) Modelling of the isothermal melt flow due to rotating magnetic fields in crystal growth. J Cryst Growth 180:410–421

    Article  Google Scholar 

  8. Gelfgat Y, Krūminš J, Li BQ (2000) Effects of system parameters on MHD flows in rotating magnetic fields. J Cryst Growth 210:788–796

    Article  Google Scholar 

  9. Yildiz E, Dost S, Yildiz M (2006) A numerical simulation study for the effect of magnetic fields in liquid phase diffusion growth of SiGe single crystals. J Cryst Growth 291:497–511

    Article  Google Scholar 

  10. Yildiz E, Dost S (2007) A numerical simulation study for the combined effect of static and rotating magnetic fields in liquid phase diffusion growth of SiGe. J Cryst Growth 303:279–283

    Article  Google Scholar 

  11. Wang X, Ma N, Bliss DF et al (2007) Combining static and rotating magnetic fields during modified vertical Bridgman crystal growth. Reston, J Thermophys Heat Tr 21:736–743

    Article  Google Scholar 

  12. Vizman D, Fischer B, Friedrich J et al (2000) 3D numerical simulation of melt flow in the presence of a rotating magnetic field. Int J Numer Method H 10:366–384

    Article  MATH  Google Scholar 

  13. Barmin IV, Senchenkov AS, Greif A et al (2009) Application of rotating magnetic fields to crystal growth under microgravity (experiments on Foton-M3). Magnetohydrodynamics 45:325–331

    Google Scholar 

  14. Walker J (1998) Bridgman crystal growth with a strong, low-frequency, rotating magnetic field. J Cryst Growth 192:318–327

    Article  Google Scholar 

  15. Dold P, Benz K (1999) Rotating magnetic fields: fluid flow and crystal growth applications. Prog Cryst Growth Ch 38:39–58

    Article  Google Scholar 

  16. Friedrich J, Lee YS, Fischer B et al (1999) Experimental and numerical study of Rayleigh-Bénard convection affected by a rotating magnetic field. Phys Fluids 11:853–861

    Article  MATH  Google Scholar 

  17. Gelfgat YM, Krumin J, Abricka M (1999) Rotating magnetic fields as a means to control the hydrodynamics and heat transfer in single crystal growth processes. Prog Cryst Growth Ch 38:73–132

    Article  Google Scholar 

  18. Cröll A, Dold P, Kaiser Th, Szofran FR et al (1999) The influence of static and rotating magnetic fields on heat and mass transfer in silicon floating zones. J Electrochem Soc 146:2270–2275

    Article  Google Scholar 

  19. Fischer B, Friedrich J, Weimann H et al (1999) The use of time-dependent magnetic fields for control of convective flows in melt growth configurations. J Cryst Growth 198(199):170–175

    Article  Google Scholar 

  20. Senchenkov AS, Barmin IV (2003) Application of a rotating magnetic field to semiconductor crystal growth in space. Magnetohydrodynamics 39:531–538

    Google Scholar 

  21. vonAmmon W, Gelfgat Y, Gorbunov L et al (2006) Application of magnetic fields in industrial growth of silicon single crystals. Magnetohydrodynamics 42:427–444

    Google Scholar 

  22. Muižnieks A, Lācis K, Rudevičs A et al (2010) Development of numerical calculation of electromagnetic fields in FZ silicon crystal growth process. Magnetohydrodynamics 46:475–486

    Google Scholar 

  23. Dold P, Cröll A, Lichtensteiger M et al (2001) Floating zone growth of silicon in magnetic fields IV, rotating magnetic fields. J Cryst Growth 231:95–106

    Article  Google Scholar 

  24. Martin L, Witkowski L, Walker JS (2001) Flow driven by Marangoni convection and rotating magnetic field in a floating-zone configuration. Magnetohydrodynamics 37:112–118

    Google Scholar 

  25. Walker JS, Witkowski LM, Houchens BC (2003) Effects of a rotating magnetic field on the thermocapillary instability in the floating zone process. J Cryst Growth 252:413–423

    Article  Google Scholar 

  26. Bouizi O, Delcarte C, Kasperski G (2007) Stability study of the floating zone with respect to the Prandtl number value. Phys Fluids 19:114102

    Article  Google Scholar 

  27. Kasperski G, Batoul A, Labrosse G (2000) Up to the unsteadiness of axisymmetric thermocapillary flows in a laterally heated liquid bridge. Phys Fluids 12:103–119

    Article  MATH  Google Scholar 

  28. Muižnieks A, Lācis K, Nacke B (2007) 3D unsteady modelling of the melt flow in the fz silicon crystal growth process. Magnetohydrodynamics 43:377–386

    Google Scholar 

  29. Lācis K, Muižnieks A, Ratnieks G (2005) 3D mathematical model system for melt hydrodynamics in the silicon single crystal FZ-growth process with rotating magnetic field. Magnetohydrodynamics 41:147–158

    Google Scholar 

  30. Chen C, Zeng Z, Mizuseki H et al (2008) Thermocapillary convection of liquid bridge under axisymmetric magnetic fields. Mater Trans 49:2566–2571

    Article  Google Scholar 

  31. Chen Q, Hu W (1998) Influence of liquid bridge volume on instability of floating half zone convection. Int J Heat Mass Tran 41:825–837

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeng Z, Mizuseki H, Simamura K et al (2001) Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity. Int J Heat Mass Tran 44:3765–3774

    Article  MATH  Google Scholar 

  33. Nakamura S, Hibiya T, Imaishi N et al (1999) Observation of Marangoni convection in a half-zone silicon melt. Adv Space Res 24:1417–1421

    Article  Google Scholar 

  34. Yao L, Zeng Z, Mizuseki H et al (2010) Effects of rotating magnetic fields on thermocapillary flow: comparison of the infinite and the Φ1–Φ2 models. Int J Therm Sci 49:2413–2418

    Article  Google Scholar 

  35. Priede J (1993) Theoretical study of a flow in an axisymmetric cavity of finite length, driven by a rotating magnetic field. University of Salaspils, Latvia, PhD thesis

  36. Yao L (2011) Convection properties in the floating half-zone and convection control of rotating magnetic fields under microgravity, Chonqing University, P. R. China, PhD thesis (in chinese)

Download references

Acknowledgments

The authors are grateful to the staff of the Center for Computer Materials Science at the Institute for Materials Research, Tohoku University, for their continuous support of the SR11000 supercomputing facilities. This work is supported by the National Natural Science Foundation of China (Grant No. 10872222 and 50921063), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110191110037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li** Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Zeng, Z., Zhang, Y. et al. Influence of rotating magnetic field strength on three-dimensional thermocapillary flow in a floating half-zone model. Heat Mass Transfer 48, 2103–2111 (2012). https://doi.org/10.1007/s00231-012-1051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1051-5

Keywords

Navigation