Log in

Locally algebraic vectors in the Breuil–Herzig ordinary part

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

For a fairly general reductive group \({G_{/\mathbb{Q}_p}}\), we explicitly compute the space of locally algebraic vectors in the Breuil–Herzig construction \({\Pi(\rho)^{ord}}\), for a potentially semistable Borel-valued representation \({\rho}\) of \({Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)}\). The point being we deal with the whole representation, not just its socle—and we go beyond \({GL_n(\mathbb{Q}_p)}\). In the case of \({GL_2(\mathbb{Q}_p)}\), this relation is one of the key properties of the \({p}\)-adic local Langlands correspondence. We give an application to \({p}\)-adic local-global compatibility for \({\Pi(\rho)^{ord}}\) for modular representations, but with no indecomposability assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abe N.: On a classification of irreducible admissible modulo p representations of a p-adic split reductive group. Compos. Math. 149(12), 2139–2168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brinon, O., Conrad, B.: p-adic Hodge theory. Notes from CMI Summer school in Hawaii (2009) (unpublished). http://math.stanford.edu/~conrad/papers/notes.pdf

  3. Buzzard, K., Gee, T.: The conjectural connections between automorphic representations and Galois representations. In: Proceedings of the LMS Durham Symposium (2011) (to appear)

  4. Breuil C., Herzig F.: Ordinary representations of \({G(\mathbb{Q}_p)}\) and fundamental algebraic representations. Duke Math. J. 164(7), 1271–1352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloch, S., Kato, K.: L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333–400, Progr. Math., 86, Birkhauser Boston, Boston, MA, (1990)

  6. Barnet-Lamb T., Gee T., Geraghty D., Taylor R.: Local-global compatibility for l=p, I. Ann. Fac. Sci. Toulouse Math. (6) 21(1), 57–92 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnet-Lamb T., Gee T., Geraghty D., Taylor R.: Local-global compatibility for l=p, II. Ann. Sci. Éc. Norm. Supér. (4) 47(1), 165–179 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Borel, A.: Linear algebraic groups. In: Graduate Texts in Mathematics, 2nd edn., vol. 126. Springer, New York (1991)

  9. Breuil, C.: Vers le socle localement analytique pour \({GL_n}\) I. Annales de l’Institut Fourier (unpublished). http://www.math.u-psud.fr/~breuil/publications.html

  10. Breuil, C.: Induction parabolique et \({(\phi,\Gamma)}\)-modules. Algebra Number Theory 9(10), 2241–2291 (2015)

  11. Breuil C., Schneider P.: First steps towards p-adic Langlands functoriality. J. Reine Angew. Math. 610, 149–180 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Caraiani A.: Monodromy and local-global compatibility for l=p. Algebra Number Theory 8(7), 1597–1646 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caraiani, A., Emerton, M., Geraghty, D., Paskunas, V., Shin, S.W.: Patching and the p-adic local Langlands correspondence (2013) (unpublished). http://wwwf.imperial.ac.uk/~tsg/

  14. Colmez P., Dospinescu G., Paskunas V.: The p-adic local Langlands correspondence for \({GL_2(\mathbb{Q}_p)}\). Cambridge J. Math. 2, 1–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colmez P.: Représentations de \({GL_2(\mathbb{Q}_p)}\) et \({(\phi,\Gamma)}\)-modules. Astérisque 330, 281–509 (2010)

    MathSciNet  Google Scholar 

  16. Emerton M.: p-adic L-functions and unitary completions of representations of p-adic reductive groups. Duke Math. J. 130(2), 353–392 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Emerton, M.: Local-global compatibility in the p-adic Langlands programme for \({GL_2/\mathbb{Q}}\) (2011) (unpublished). http://www.math.uchicago.edu/~emerton/preprints.html

  18. Gao, H.: A note on crystalline liftings in the \({\mathbb{Q}_p}\) case (2015). ar**v:1505.0012

  19. Gee T., Geraghty D.: Companion forms for unitary and symplectic groups. Duke Math. J. 161(2), 247–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hauseux, J.: Extensions entre séries principales \({p}\)-adiques et modulo \({p}\) de \({G(F)}\). J. Inst. Math. Jussieu. pp. 1–46 (2015)

  21. Hauseux, J.: Sur une conjecture de Breuil–Herzig (2015). ar**v:1405.6371

  22. Kisin M.: The Fontaine-Mazur conjecture for \({GL_2}\). J. Am. Math. Soc. 22(3), 641–690 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nekovar, J.: On p-adic height pairings. Seminaire de Theorie des Nombres, Paris, 199091, 127–202, Progr. Math., 108, Birkhauser Boston, Boston, MA (1993)

  24. Ollivier R.: Critere d’irreductibilite pour les series principales de \({GL_n(F)}\) en caracteristique p. J. Algebra 304(1), 39–72 (2006)

    Article  MathSciNet  Google Scholar 

  25. Paškūnas V.: On the Breuil–Mzard conjecture. Duke Math. J. 164(2), 297–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pink R.: \({\ell}\)-adic algebraic monodromy groups, cocharacters, and the Mumford-Tate conjecture. J. Reine Angew. Math. 495, 187–237 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Sander, F.: A local proof of the Breuil–Mezard conjecture in the scalar semi-simplification case (2015). ar**v:1506.01197v1

  28. Schneider, P.: Continuous representation theory of p-adic Lie groups. International Congress of Mathematicians. Vol. II, 1261–1282, Eur. Math. Soc., Zurich (2006)

  29. Schneider, P., Teitelbaum, J.: Banach-Hecke algebras and p-adic Galois representations. Doc. Math. Extra Vol., 631–684 (2006)

  30. Sorensen C.: Eigenvarieties and invariant norms. Pac. J. Math. 275(1), 191–230 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wintenberger J.-P.: Relevement selon une isogenie de systemes l-adiques de representations galoisiennes associes aux motifs. Invent. Math. 120(2), 215–240 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Sorensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Sorensen, C. Locally algebraic vectors in the Breuil–Herzig ordinary part. manuscripta math. 151, 113–131 (2016). https://doi.org/10.1007/s00229-016-0831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0831-5

Mathematics Subject Classification

Navigation