Log in

Long Noncoding RNA Analyses for Osteoporosis Risk in Caucasian Women

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Introduction

Osteoporosis is a prevalent bone metabolic disease characterized by bone fragility. As a key pathophysiological mechanism, the disease is caused by excessive bone resorption (by osteoclasts) over bone formation (by osteoblasts). Peripheral blood monocytes (PBMs) is a major systemic cell model for bone metabolism by serving as progenitors of osteoclasts and producing cytokines important for osteoclastogenesis. Protein-coding genes for osteoporosis have been widely studied by mRNA analyses of PBMs in high versus low hip bone mineral density (BMD) subjects. However, long noncoding RNAs (lncRNAs), which account for a large proportion of human transcriptome, have seldom been studied.

Methods

In this study, microarray analyses of monocytes were performed using Affymetrix exon 1.0 ST arrays in 73 Caucasian females (age: 47–56). LncRNA profile was generated by re-annotating exon array for lncRNAs detection, which yielded 12,007 lncRNAs mapped to the human genome.

Results

575 lncRNAs were differentially expressed between the two groups. In the high BMD subjects, 309 lncRNAs were upregulated and 266 lncRNAs were downregulated (nominally significant, raw p-value < 0.05). To investigate the relationship between mRNAs and lncRNAs, we used two approaches to predict the target genes of lncRNAs and found that 26 candidate lncRNAs might regulate mRNA expression. The majority of these lncRNAs were further validated to be potentially correlated with BMD by GWAS analysis.

Conclusion

Overall, our findings for the first time reported the lncRNAs profiles for osteoporosis and suggested the potential regulatory mechanism of lncRNAs on protein-coding genes in bone metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhou Y, Deng HW, Shen H (2015) Circulating monocytes: an appropriate model for bone-related study. Osteoporos Int 26(11):2561–2572. https://doi.org/10.1007/s00198-015-3250-7

    Article  CAS  PubMed  Google Scholar 

  2. Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137(9):4058–4060. https://doi.org/10.1210/endo.137.9.8756585

    Article  CAS  PubMed  Google Scholar 

  3. Higuchi S, Tabata N, Tajima M, Ito M, Tsurudome M, Sudo A, Uchida A, Ito Y (1998) Induction of human osteoclast-like cells by treatment of blood monocytes with anti-fusion regulatory protein-1/CD98 monoclonal antibodies. J Bone Miner Res 13(1):44–49. https://doi.org/10.1359/jbmr.1998.13.1.44

    Article  CAS  PubMed  Google Scholar 

  4. Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, Kuestner R, Pacifici R (1996) Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93(20):10785–10790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Purton LE, Lee MY, Torok-Storb B (1996) Normal human peripheral blood mononuclear cells mobilized with granulocyte colony-stimulating factor have increased osteoclastogenic potential compared to nonmobilized blood. Blood 87(5):1802–1808

    CAS  PubMed  Google Scholar 

  6. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80. https://doi.org/10.1182/blood-2010-02-258558

    Article  CAS  PubMed  Google Scholar 

  7. Ziegler-Heitbrock L, Hofer TP (2013) Toward a refined definition of monocyte subsets. Front Immunol 4:23. https://doi.org/10.3389/fimmu.2013.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Komano Y, Nanki T, Hayashida K, Taniguchi K, Miyasaka N (2006) Identification of a human peripheral blood monocyte subset that differentiates into osteoclasts. Arthritis Res Ther 8(5):R152. https://doi.org/10.1186/ar2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Custer RPAF (1932) Studies of the structure and function of bone marrow: variations in cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17:960–962

    Google Scholar 

  10. Horton MA, Spragg JH, Bodary SC, Helfrich MH (1994) Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 15(6):639–646

    Article  CAS  PubMed  Google Scholar 

  11. Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55(3):273–286. https://doi.org/10.1002/jcb.240550303

    Article  CAS  PubMed  Google Scholar 

  12. Parfitt AM (1998) Osteoclast precursors as leukocytes: importance of the area code. Bone 23(6):491–494

    Article  CAS  PubMed  Google Scholar 

  13. Zallone AZ, Teti A, Primavera MV (1984) Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 66:335–342

    Google Scholar 

  14. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. https://doi.org/10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  15. Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. https://doi.org/10.1016/j.cell.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell 148(4):664–678. https://doi.org/10.1016/j.cell.2011.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246. https://doi.org/10.1016/j.molcel.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  18. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678. https://doi.org/10.1016/j.molcel.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tong X, Gu PC, Xu SZ, Lin XJ (2015) Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem 79(5):732–737. https://doi.org/10.1080/09168451.2014.998617

    Article  CAS  PubMed  Google Scholar 

  20. Dou C, Cao Z, Yang B, Ding N, Hou T, Luo F, Kang F, Li J, Yang X, Jiang H, **ang J, Quan H, Xu J, Dong S (2016) Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 6:21499. https://doi.org/10.1038/srep21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michelhaugh SK, Lipovich L, Blythe J, Jia H, Kapatos G, Bannon MJ (2011) Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 116(3):459–466. https://doi.org/10.1111/j.1471-4159.2010.07126.x

    Article  CAS  PubMed  Google Scholar 

  22. Johnson R (2012) Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis 46(2):245–254. https://doi.org/10.1016/j.nbd.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  23. Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS (2009) NRED: a database of long noncoding RNA expression. Nucleic Acids Res 37(Database issue):D122–D126. https://doi.org/10.1093/nar/gkn617

    Article  CAS  PubMed  Google Scholar 

  24. Gellert P, Ponomareva Y, Braun T, Uchida S (2013) Noncoder: a web interface for exon array-based detection of long non-coding RNAs. Nucleic Acids Res 41(1):e20. https://doi.org/10.1093/nar/gks877

    Article  CAS  PubMed  Google Scholar 

  25. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, Chen Y, Liu XS (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20(7):908–913. https://doi.org/10.1038/nsmb.2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu YZ, Zhou Y, Zhang L, Li J, Tian Q, Zhang JG, Deng HW (2015) Attenuated monocyte apoptosis, a new mechanism for osteoporosis suggested by a transcriptome-wide expression study of monocytes. PLoS ONE 10(2):e0116792. https://doi.org/10.1371/journal.pone.0116792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315. https://doi.org/10.1093/bioinformatics/btg405

    Article  CAS  PubMed  Google Scholar 

  28. Kendziorski C, Irizarry RA, Chen KS, Haag JD, Gould MN (2005) On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci USA 102(12):4252–4257. https://doi.org/10.1073/pnas.0500607102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  30. Lee M-LT (2004) Analysis of microarray gene expression data. Kluwer Academic Publishers, Boston

    Google Scholar 

  31. Lee ML, Whitmore GA (2002) Power and sample size for DNA microarray studies. Stat Med 21(23):3543–3570. https://doi.org/10.1002/sim.1335

    Article  PubMed  Google Scholar 

  32. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17(5):556–565. https://doi.org/10.1101/gr.6036807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. https://doi.org/10.1016/j.cell.2009.02.006

    Article  CAS  PubMed  Google Scholar 

  34. Guenzl PM, Barlow DP (2012) Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol 9(6):731–741. https://doi.org/10.4161/rna.19985

    Article  CAS  PubMed  Google Scholar 

  35. Wang M, Liu W, Jiao J, Li J, Wang C, Zhang L (2017) Expression profiling of mRNAs and long non-coding RNAs in aged mouse olfactory bulb. Sci Rep 7(1):2079. https://doi.org/10.1038/s41598-017-02329-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan H, Zhang Q, Zhao X, Lv P, Liu M, Tang H (2017) Transcriptomic profiling of long non-coding RNAs in hepatitis B virus-related hepatocellular carcinoma. Oncotarget 8(39):65421–65434. https://doi.org/10.18632/oncotarget.18897

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang J, Feng C, Song C, Ai B, Bai X, Liu Y, Li X, Zhao J, Shi S, Chen X, Su X, Li C (2018) Identification and analysis of a key long non-coding RNAs (lncRNAs)-associated module reveal functional lncRNAs in cardiac hypertrophy. J Cell Mol Med 22(2):892–903. https://doi.org/10.1111/jcmm.13376

    Article  CAS  PubMed  Google Scholar 

  38. Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, Cavalcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV (2010) Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics 26(7):971–973. https://doi.org/10.1093/bioinformatics/btq048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, Dahia CL, Park-Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu CT, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson-Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou WC, Mokry LE, Moayyeri A, Claussnitzer M, Cheng CH, Cheung W, Medina-Gomez C, Ge B, Chen SH, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor NM, de Groot LC, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix AZ, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia-Giralt N, Launer LL, Gudnason V, Mellstrom D, Vandenput L, Amin N, van Duijn CM, Karlsson MK, Ljunggren O, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussiere J, Arp PP, Koromani F, Prince RL, Lewis JR, Langdahl BL, Hermann AP, Jensen JE, Kaptoge S, Khaw KT, Reeve J, Formosa MM, Xuereb-Anastasi A, Akesson K, McGuigan FE, Garg G, Olmos JM, Zarrabeitia MT, Riancho JA, Ralston SH, Alonso N, Jiang X, Goltzman D, Pastinen T, Grundberg E, Gauguier D, Orwoll ES, Karasik D, Davey-Smith G, Consortium A, Smith AV, Siggeirsdottir K, Harris TB, Zillikens MC, van Meurs JB, Thorsteinsdottir U, Maurano MT, Timpson NJ, Soranzo N, Durbin R, Wilson SG, Ntzani EE, Brown MA, Stefansson K, Hinds DA, Spector T, Cupples LA, Ohlsson C, Greenwood CM, Consortium UK, Jackson RD, Rowe DW, Loomis CA, Evans DM, Ackert-Bicknell CL, Joyner AL, Duncan EL, Kiel DP, Rivadeneira F, Richards JB (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117. https://doi.org/10.1038/nature14878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, Tibshirani RJ (2012) Strong rules for discarding predictors in lasso-type problems. J R Stat Soc Ser B Stat Methodol 74(2):245–266. https://doi.org/10.1111/j.1467-9868.2011.01004.x

    Article  Google Scholar 

  42. Liu Q, Zhang X, Dai L, Hu X, Zhu J, Li L, Zhou C, Ao Y (2014) Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. Arthritis Rheumatol 66(4):969–978. https://doi.org/10.1002/art.38309

    Article  CAS  PubMed  Google Scholar 

  43. Li JP, Liu LH, Li J, Chen Y, Jiang XW, Ouyang YR, Liu YQ, Zhong H, Li H, **ao T (2013) Microarray expression profile of long noncoding RNAs in human osteosarcoma. Biochem Biophys Res Commun 433(2):200–206. https://doi.org/10.1016/j.bbrc.2013.02.083

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Li Z, Li Z, Yu B, Wang Y (2015) Long noncoding RNAs expression signatures in chondrogenic differentiation of human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 456(1):459–464. https://doi.org/10.1016/j.bbrc.2014.11.106

    Article  CAS  PubMed  Google Scholar 

  45. Zuo C, Wang Z, Lu H, Dai Z, Liu X, Cui L (2013) Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. Mol Med Rep 8(2):463–467. https://doi.org/10.3892/mmr.2013.1540

    Article  PubMed  Google Scholar 

  46. Li X, Wei W, Huynh H, Zuo H, Wang X, Wan Y (2015) Nur77 prevents excessive osteoclastogenesis by inducing ubiquitin ligase Cbl-b to mediate NFATc1 self-limitation. Elife 4:e07217. https://doi.org/10.7554/eLife.07217

    Article  PubMed  PubMed Central  Google Scholar 

  47. Irie A, Yamamoto K, Miki Y, Murakami M (2017) Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci Rep 7:46715. https://doi.org/10.1038/srep46715

    Article  PubMed  PubMed Central  Google Scholar 

  48. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigó R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101. https://doi.org/10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3(9):eaao2110. https://doi.org/10.1126/sciadv.aao2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322(5908):1717. https://doi.org/10.1126/science.1163802

    Article  CAS  PubMed  Google Scholar 

  51. Bond AM, VanGompel MJW, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020. https://doi.org/10.1038/nn.2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maruyama K, Uematsu S, Kondo T, Takeuchi O, Martino MM, Kawasaki T, Akira S (2013) Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. J Exp Med 210(10):1947–1960. https://doi.org/10.1084/jem.20130512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Atkins GJ, Kostakis P, Vincent C, Farrugia AN, Houchins JP, Findlay DM, Evdokiou A, Zannettino AC (2006) RANK expression as a cell surface marker of human osteoclast precursors in peripheral blood, bone marrow, and giant cell tumors of bone. J Bone Miner Res 21(9):1339–1349. https://doi.org/10.1359/jbmr.060604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The investigators of this work were partially supported by Grants from the National Institutes of Health [AR069055, U19 AG055373, R01 MH104680, R01AR059781, and P20GM109036], and the Edward G. Schlieder Endowment as well as the Drs. W. C. Tsai and P. T. Kung Professorship in Biostatistics from Tulane University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wen Deng.

Ethics declarations

Conflict of interest

Authors Yu Zhou, Chao Xu, Wei Zhu, Hao He, Lan Zhang, Beisha Tang, Yong Zeng, Qing Tian, and Hong-Wen Deng have declared that no conflict of interest exists.

Human and Animal Rights and Informed Consent

All the methods were conducted in accordance with the regulations and guidelines of the Institutional Review Boards of University of Missouri Kansas City and Tulane University. The Institutional Review Boards of University of Missouri Kansas City and Tulane University approved the study. Written informed consent was obtained from all participants before inclusion in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xu, C., Zhu, W. et al. Long Noncoding RNA Analyses for Osteoporosis Risk in Caucasian Women. Calcif Tissue Int 105, 183–192 (2019). https://doi.org/10.1007/s00223-019-00555-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00555-8

Keywords

Navigation