Log in

Level-Rank Duality via Tensor Categories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a new way to derive branching rules for the conformal embedding

$$(\hat{\mathfrak{sl}}_n)_m\oplus(\hat{\mathfrak{sl}}_m)_n\subset(\hat{\mathfrak{sl}}_{nm})_1. $$

In addition, we show that the category \({\mathcal{C}(\hat{\mathfrak{sl}}_n)_m^0}\) of degree zero integrable highest weight \({(\hat{\mathfrak{sl}}_n)_m}\) -representations is braided equivalent to \({\mathcal{C}(\hat{\mathfrak{sl}}_m)_n^0}\) with the reversed braiding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschuler D., Bauer M., Itzykson C.: The branching rules of conformal embeddings. Commun. Math. Phys. 132(2), 349–364 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bakalov, B., Kirillov, A. Jr.: Lectures on Tensor Categories and Modular Functors, University Lecture Series, Volume 21, Providence, RI: Amer. Math. Soc., 2001

  3. Blanchet C.: Hecke algebras, modular categories and 3-manifolds quantum invariants. Topology 39(1), 193–223 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013)

    MATH  MathSciNet  Google Scholar 

  5. Davydov A., Nikshych D., Ostrik V.: On the structure of the Witt group of braided fusion categories. Selecta Math. 19(1), 237–269 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162, 581–642 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frenkel, I.B.: Representations of affine Lie algebras, Hecke modular forms and Korteweg de Vries type equations. Lecture Notes in Math. 933. Berlin-Heidelberg-New York: Springer, 1981, pp. 71–109

  8. Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Adv. Math. 199(1), 192–329 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fuchs J.: The connections between Wess-Zumino-Witten models and free field theories. Nucl. Phys. B (Proc. Suppl.) 6, 157–159 (1989)

    Article  ADS  MATH  Google Scholar 

  10. Humphreys, J.E.: Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Berlin-Heidelberg-New York: Springer, 1972

  11. Kassel, C.: Quantum groups. Graduate Texts in Mathematics, Berlin-Heidelberg-New York: Springer-Verlag, 1995

  12. Kac, V.G.: Infinite dimensional Lie algebras. Cambridge: Cambridge University Press, 3rd-Edition, 1990

  13. Kirillov A., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \({\hat{\mathfrak{sl}}_n)_m^0}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Macdonald, I.: Symmetric Functions and Hall Polynomials. Second Edition, Oxford: Oxford Science Publications, 1995

  15. Marian A., Oprea D.: The level-rank duality for non-abelian theta functions. Invent. Math. 168(2), 225–247 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Müger M.: On the structure of modular categories. Proc. Lond. Math. 87, 291–308 (2003)

    Article  MATH  Google Scholar 

  17. Nakanishi T., Tsuchiya A.: Level-rank duality of WZW models in conformal field theory. Commun. Math. Phys. 144(2), 351–372 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Procesi, C.: Lie Groups, an approach through invariants and representations. Berlin-Heidelberg-New York: Springer, 2007

  19. Stanley, R.: Theory and application of plane partitions, Part 2. Studies in Applied Mathematics, Vol. 1, No. 3, 1971, available at http://math.mit.edu/~rstan/pubs/pubfiles/12-2.pdf, 1971

  20. Walton M.: Conformal branching rules. Nucl. Phys. B 322, 775–790 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. Xu F.: Applications of braided endomorphisms from conformal inclusions. IMRN 1998(1), 5–23 (1998)

    Article  MATH  Google Scholar 

  22. Xu F.: Mirror extensions of local nets. Commun. Math. Phys. 270(3), 835–847 (2007)

    Article  ADS  MATH  Google Scholar 

  23. Xu F.: An application of mirror extensions. Commun. Math. Phys. 290(1), 83–103 (2009)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sun.

Additional information

Communicated by Y. Kawahigashi

Dedicated to Igor Frenkel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrik, V., Sun, M. Level-Rank Duality via Tensor Categories. Commun. Math. Phys. 326, 49–61 (2014). https://doi.org/10.1007/s00220-013-1869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1869-9

Keywords

Navigation