Log in

Conservative Solutions to a Nonlinear Variational Wave Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish the existence of a conservative weak solution to the Cauchy problem for the nonlinear variational wave equation u tt c(u)(c(u)u x ) x =0, for initial data of finite energy. Here c(·) is any smooth function with uniformly positive bounded values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albers M., Camassa R., Holm D., Marsden J. (1994). The geometry of peaked solitons and billiard solutions of a class of integrable PDE’s. Lett. Math. Phys. 32:137–151

    Article  ADS  MathSciNet  Google Scholar 

  2. Balabane M. (1985). Non–existence of global solutions for some nonlinear wave equations with small Cauchy data. C. R. Acad. Sc. Paris 301:569–572

    MATH  MathSciNet  Google Scholar 

  3. Berestycki H., Coron J.M., Ekeland I. (eds.) (1990). Variational Methods Progress in Nonlinear Differential Equations and Their Applications, Vol 4. Birkhäuser, Boston

    Google Scholar 

  4. Bressan, A., Constantin, A.: Global solutions to the Camassa-Holm equations. To appear

  5. Bressan, A., Zhang, P., Zheng, Y.: On asymptotic variational wave equations. Arch. Rat. Mech. Anal. To appear

  6. Camassa R., Holm D. (1993). An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71:1661–1664

    Article  PubMed  MATH  ADS  MathSciNet  Google Scholar 

  7. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. To appear in Adv. Appl. Mech.

  8. Christodoulou D., Tahvildar-Zadeh A. (1993). On the regularity of spherically symmetric wave maps. Comm. Pure Appl. Math. 46:1041–1091

    Article  MATH  MathSciNet  Google Scholar 

  9. Coron J., Ghidaglia J., Hélein F. (eds) (1991). Nematics. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  10. Ericksen J.L., Kinderlehrer D. (eds) (1987). Theory and Application of Liquid Crystals IMA Volumes in Mathematics and its Applications, Vol 5. Springer-Verlag, New York

    Google Scholar 

  11. Glassey R.T. (1981). Finite–time blow–up for solutions of nonlinear wave equations. Math. Z. 177:323–340

    Article  MATH  MathSciNet  Google Scholar 

  12. Glassey R.T., Hunter J.K., Zheng Y. (1996). Singularities in a nonlinear variational wave equation. J. Diff. Eqs. 129:49–78

    Article  MATH  MathSciNet  Google Scholar 

  13. Glassey, R.T., Hunter, J.K., Zheng, Y.: Singularities and oscillations in a nonlinear variational wave equation. Singularities and Oscillations, edited by J. Rauch, M.E. Taylor, (eds.) IMA, Vol. 91, Springer, 1997

  14. Grundland A., Infeld E. (1992). A family of nonlinear Klein-Gordon equations and their solutions. J. Math. Phys. 33, 2498– 2503

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Hanouzet B., Joly J.L. (1985). Explosion pour des problèmes hyperboliques semi–linéaires avec second membre non compatible. C. R. Acad. Sc. Paris 301:581–584

    MATH  MathSciNet  Google Scholar 

  16. Hardt R., Kinderlehrer D., Lin F. (1986). Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105:547–570

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Hunter J.K., Saxton R.A. (1991). Dynamics of director fields. SIAM J. Appl. Math. 51:1498–1521

    Article  MATH  MathSciNet  Google Scholar 

  18. Hunter, J.K., Zheng, Y.: On a nonlinear hyperbolic variational equation I and II. Arch. Rat. Mech. Anal. 129, 305–353, 355–383 (1995)

    Google Scholar 

  19. Hunter J.K., Zheng Y. (1994). On a completely integrable nonlinear hyperbolic variational equation. Physica D 79:361–386

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. John F. (1979). Blow–up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28:235–268

    Article  MATH  MathSciNet  Google Scholar 

  21. Kato T. (1980). Blow–up of solutions of some nonlinear hyperbolic equations. Comm. Pure Appl. Math. 33:501–505

    Article  MATH  MathSciNet  Google Scholar 

  22. Kinderlehrer, D.: Recent developments in liquid crystal theory. In: Frontiers in pure and applied mathematics : a collection of papers dedicated to Jacques-Louis Lions on the occasion of his sixtieth birthday. ed. R. Dautray, New York: Elsevier, 1991, pp. 151–178

  23. Klainerman S., Machedon M. (1996). Estimates for the null forms and the spaces H s. Internat. Math. Res. Notices no. 17, 853–865

  24. Klainerman S., Majda A. (1980). Formation of singularities for wave equations including the nonlinear vibrating string. Comm. Pure Appl. Math. 33:241–263

    Article  MATH  MathSciNet  Google Scholar 

  25. Lax P. (1964). Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5:611–613

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Levine H. (1974). Instability and non–existence of global solutions to nonlinear wave equations. Trans. Amer. Math. Soc. 192:1–21

    Article  MATH  MathSciNet  Google Scholar 

  27. Lindblad H. (1992). Global solutions of nonlinear wave equations. Comm. Pure Appl. Math. 45:1063–1096

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu T.-P. (1979). Development of singularities in the nonlinear waves for quasi–linear hyperbolic partial differential equations. J. Differential Equations 33:92–111

    Article  MATH  MathSciNet  Google Scholar 

  29. Saxton, R.A.: Dynamic instability of the liquid crystal director. In: Contemporary Mathematics, Vol.~100: Current Progress in Hyperbolic Systems, ed. W.B. Lindquist, Providence RI: AMS, 1989, pp. 325–330

  30. Schaeffer J. (1985). The equation u tt −Δu=|u|p for the critical value of p. Proc. Roy. Soc. Edinburgh Sect. A 101A:31–44

    MathSciNet  Google Scholar 

  31. Shatah J. (1988). Weak solutions and development of singularities in the SU(2) σ-model. Comm. Pure Appl. Math. 41:459–469

    Article  MATH  MathSciNet  Google Scholar 

  32. Shatah J., Tahvildar-Zadeh A. (1992). Regularity of harmonic maps from Minkowski space into rotationally symmetric manifolds. Comm. Pure Appl. Math. 45:947–971

    Article  MATH  MathSciNet  Google Scholar 

  33. Sideris T. (1983). Global behavior of solutions to nonlinear wave equations in three dimensions. Comm. Partial Diff. Eq. 8:1291–1323

    Article  MATH  MathSciNet  Google Scholar 

  34. Sideris T. (1984). Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Diff. Eq. 52:378–406

    Article  MATH  MathSciNet  Google Scholar 

  35. Strauss, W.: Nonlinear wave equations. CBMS Lectures 73, Providence RI: AMS, 1989

  36. Virga E. (1994). Variational Theories for Liquid Crystals. Chapman & Hall, New York

    MATH  Google Scholar 

  37. Zhang P., Zheng Y. (1998). On oscillations of an asymptotic equation of a nonlinear variational wave equation. Asymptotic Analysis 18:307–327

    MATH  MathSciNet  Google Scholar 

  38. Zhang P., Zheng Y. (1999). On the existence and uniqueness of solutions to an asymptotic equation of a variational wave equation. Acta Mathematica Sinica 15:115–130

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhang P., Zheng Y. (2000). On the existence and uniqueness to an asymptotic equation of a variational wave equation with general data. Arch. Rat. Mech. Anal. 155:49–83

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang P., Zheng Y. (2001). Rarefactive solutions to a nonlinear variational wave equation. Comm. Partial Differential Equations 26:381–419

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang P., Zheng Y. (2001). Singular and rarefactive solutions to a nonlinear variational wave equation, Chinese Annals of Mathematics 22B, 2, 159–170

    Google Scholar 

  42. Zhang P., Zheng Y. (2003). Weak solutions to a nonlinear variational wave equation, Arch. Rat. Mech. Anal. 166:303–319

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhang P., Zheng Y. (2002). On the second-order asymptotic equation of a variational wave equation. Proc A of the Royal Soc. Edinburgh, A. Mathematics 132A:483–509

    Article  MathSciNet  Google Scholar 

  44. Zhang P., Zheng Y. (2005). Weak solutions to a nonlinear variational wave equation with general data. Annals of Inst. H. Poincaré, © Non Linear Anal. 22:207–226

    Article  MATH  MathSciNet  Google Scholar 

  45. Zorski H., Infeld E. (1992). New soliton equations for dipole chains. Phys. Rev. Lett. 68:1180–1183

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bressan.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bressan, A., Zheng, Y. Conservative Solutions to a Nonlinear Variational Wave Equation. Commun. Math. Phys. 266, 471–497 (2006). https://doi.org/10.1007/s00220-006-0047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0047-8

Keywords

Navigation