Log in

A biochemical system of rapidly detecting bacteria based on ATP bioluminescence technology

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A biochemical detection system based on ATP bioluminescence which can detect bacteria and microorganisms automatically and rapidly is proposed. Meanwhile, reagent formulations are optimized. In the detecting system, weak fluorescence loss is calibrated, and receiving efficiency of the photomultiplier tube is improved by making use of optical unit. The results show that rapid detection accuracy can reach 86 % compared with the traditional plate-counting method, the detecting time is controlled within twenty minutes, and detectable ATP concentration range achieves 10−15–10−8 M. Moreover, the series of curves obtained by measurements for the common variety of food (drinks, meat etc.) show that the device has a good performance and gets satisfactory testing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. GB 4789.2-94 (1994) Microbiological examination of food hygiene Detection of aerobic bacterial count

  2. Zhou A, Luo J, Yue W, He B, Yang Q, Cai X (2008) Development of handheld ATP detecting system based on bioluminescence. Chin J Sens Actuators 21(4):543–545

    Google Scholar 

  3. Steegmans M, Iliaens S, Hoebregs H (2004) Enzymatic, spectrophotometric determination of glucose, fructose and inulin/oligofructose in food. J AOAC Int 87:1200–1207

    CAS  Google Scholar 

  4. Wang H, Qin T (2009) Influence of the anti-noise capacity of measurement circuit for weak fluorescence signals on accuracy of time resolved Fluor immunoassay instrument. J Clin Rehabil Eng Res 13(4):705–707

    Google Scholar 

  5. Yu AHC, Kuniaki H (1991) ATP regeneration by cyclic photo-phosphorylation using spinach thylakoid. Biotechnol Lett 13(6):411–416

    Article  CAS  Google Scholar 

  6. Fredericks IN, Du Toit M, Krügel M (2011) Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol 28:510–517

    Article  CAS  Google Scholar 

  7. **e Y, Godelieve M, Sun Y, Wang H, Qian H, Yao W(2012) Establishment of rapid detection method of methamidophos in vegetables by surface enhanced Raman spectroscopy. Eur Food Res Technol 234(6):1091–1098

    Google Scholar 

  8. Whitehead KA, Smith LA, Verran J (2008) The detection of food soils and cells on stainless steel using industrial methods: UV illumination and ATP bioluminescence. Int J Food Microbiol 127:121–128

    Article  CAS  Google Scholar 

  9. Yue W, Zhou A, He B, Cai X (2008) A portable biochemical detection device based on fibre optic sensor. Sens Actuators B 130:21–24

    Article  Google Scholar 

  10. Eduardo C, Indira F, María D, Miguel C, Lourdes S (2011) Thermal denaturation of recombinant human lysozyme from rice: effect of pH and comparison with human milk lysozyme. Eur Food Res Technol 233:1067–1073

    Article  Google Scholar 

  11. He Y (2007) Study on ATP extractor in ATP-bioluminescence. ECNU dissertation for master’s degree

  12. Masaaki U, Rei I, Kenichi N, Yuji M, Akio K (2009) Detection of living Salmonella cells using bioluminescence. Biotechnol Lett 31:737–741

    Article  Google Scholar 

  13. Rameshkumar A, Sivasudha T, Jeyadevi R, Arul Ananth D, Pradeepha G (2012) Effect of environmental factors [air and UV-C irradiation] on some fresh fruit juices. Eur Food Res Technol 234(6):1063–1070

    Article  CAS  Google Scholar 

  14. Xu Y, Zhang W, Mao M (2007) Biochemical radiation microbe content detecting instrument based on ATP. Chin J Sci Instrum 28(2):367–370

    Google Scholar 

  15. Wang H, Hu X, Chen W, Tang B (2005) The application of photon counter PMT in fluorescence check and measure system. Control Autom 21(2):144–145

    Google Scholar 

  16. Melanie W, Marion S, Christian H (2011) Quantitative detection of lactic acid bacteria in dried sourdoughs using real-time PCR. Eur Food Res Technol 233:617–624

    Article  Google Scholar 

  17. Wen H, Chung HP, Chou FI, Lin IH, Hsieh PC (2006) Effect of gamma irradiation on microbial decontamination and chemical and sensory characteristic of lycium fruit. Radiat Phys Chem 75:596–603

    Article  CAS  Google Scholar 

  18. Marsilio R, Naturale M, Manghi P, Montini G, Murer L, Ros M, Bisogno G, Andretta B, Dussini N, Giordano G, Zacchello G, Dall’Amico R (2000) Rapid and simple determination of inulin in biological fluids by high-performance liquid chromatography with light-scattering detection. J Chromatogr B 744:241–247

    Article  CAS  Google Scholar 

  19. Randazzo CL, Heilig H, Restuccia C, Giudici P, Caggia C (2005) Bacterial population in traditional sourdough evaluated by molecular methods. J Appl Microbiol 99:251–258

    Article  CAS  Google Scholar 

  20. Araya S, Suporn N, Sanun J, Aran P, Supalax S (2011) A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Eur Food Res Technol 233:609–616

    Article  Google Scholar 

  21. Kenichi N, Tadahiro M, Hiroya F, Tomonari K, Masaaki U, Yasuo A, Akio K (2008) Single bacterial cell detection using a mutant luciferase. Biotechnol Lett 30:1051–1054

    Article  Google Scholar 

  22. Rocha JR, Catana R, Ferreira BS, Cabral JMS, Fernandes P (2006) Design and characterisation of an enzyme system for inulin hydrolysis. Food Chem 95:77–82

    Article  CAS  Google Scholar 

  23. Fan J, Meng S, Zhuang Q (2008) A high precision Ripple compensated high voltage switch mode power supply for PMT. Optoelectron Technol 28(1):69–72

    Google Scholar 

Download references

Acknowledgments

This paper was supported by the State Natural Sciences Foundation of China (No. 10874103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Zhang, B. & Zhuang, X. A biochemical system of rapidly detecting bacteria based on ATP bioluminescence technology. Eur Food Res Technol 236, 41–46 (2013). https://doi.org/10.1007/s00217-012-1854-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1854-0

Keywords

Navigation