Log in

Neuroprotective activity of selenium nanoparticles against the effect of amino acid enantiomers in Alzheimer’s disease

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), the most prevalent neurodegenerative disease, is characterized by extracellular accumulation of amyloid-beta protein (Aβ), which is believed to be the very starting event of AD neurodegeneration. In this work, D-Phe, D-Ala, and D-Glu amino acids, which are the non-occurring enantiomeric form in the human body, and also D-Asp and DL-SeMet, have proved to be amyloidogenic regarding Aβ42 aggregation in TEM studies. These amyloidogenic amino acid enantiomers also widened Aβ42 fibrils up to 437% regarding Aβ42 alone, suggesting that Aβ42 aggregation is enantiomerically dependent. To inhibit enantiomeric-induced amyloid aggregation, selenium nanoparticles stabilized with chitosan (Ch-SeNPs) were successfully synthesized and employed. Thus, Ch-SeNPs reduced and even completely inhibited Aβ42 aggregation produced in the presence of some amino acid enantiomers. In addition, through UV–Vis spectroscopy and fluorescence studies, it was deduced that Ch-SeNPs were able to interact differently with amino acids depending on their enantiomeric form. On the other hand, antioxidant properties of amino acid enantiomers were evaluated by DPPH and TBARS assays, with Tyr enantiomers being the only ones showing antioxidant effect. All spectroscopic data were statistically analysed through experimental design and response surface analysis, showing that the interaction between the Ch-SeNPs and the amino acids studied was enantioselective and allowing, in some cases, to establish the concentration ratios in which this interaction is maximum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

42 :

Amyloid-beta protein fragment 1–42

AD:

Alzheimer’s disease

T IC50 :

Stationary time to reach IC50

IC50 :

Half maximal inhibitory concentration

Ch-SeNPs:

Selenium nanoparticles stabilized with chitosan

ROS:

Reactive oxygen species

SeMet:

Selenomethionine

NMDA:

N-Methyl-D-aspartate

TEM:

Transmission electron microscopy

BBB:

Blood–brain barrier

OPA:

ortho-Phthalaldehyde

TBARS:

Thiobarbituric acid reactive substance

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

HFIP:

1,1,1,3,3,3-Hexafluoro-2-propanol

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

EDXS:

Energy-dispersive X-ray spectroscope

UV–Vis:

Ultraviolet–visible

ANOVA:

Analysis of variance

LSD:

Least significant difference

References

  1. Lewczuk P, Mroczko B, Fagan A, Kornhuber J. Biomarkers of Alzheimer’s disease and mild cognitive impairment: a current perspective. Adv Med Sci. 2015;60:76–82.

    Article  PubMed  Google Scholar 

  2. Reitz C, Brayne C, y Mayeux R,. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7:137–52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Souza LC, Sarazin M, Teixeira Júnior AL, Caramelli P, dos Santos AE, Dubois B, de Souza LC, Sarazin M, Teixeira Júnior AL, Caramelli P, dos Santos AE, Dubois B. Biological markers of Alzheimer’s disease. Arq Neuropsiquiatr. 2014;72:227–31. https://doi.org/10.1590/0004-282X20130233.

    Article  PubMed  Google Scholar 

  4. Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010;12:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D’Ursi AM, Temussi PA, Picone D. Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment: similarity with a virus fusion domain. Eur J Biochem. 2002;269:5642–8. https://doi.org/10.1046/j.1432-1033.2002.03271.x.

    Article  CAS  PubMed  Google Scholar 

  6. Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450–64. https://doi.org/10.1016/j.redox.2017.10.014.

    Article  CAS  PubMed  Google Scholar 

  7. Qi Y, Yi P, He T, Song X, Liu Y, Li Q, Zheng J, Song R, Liu C, Zhang Z, Peng W, Zhang Y (2020) Quercetin-loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 602:. https://doi.org/10.1016/j.colsurfa.2020.125058

  8. Rocchi D, Blázquez-Barbadillo C, Agamennone M, Laghezza A, Tortorella P, Vicente-Zurdo D, Rosales-Conrado N, Moyano P, del Pino J, González JF, Menéndez JC. Discovery of 7-aminophenanthridin-6-one as a new scaffold for matrix metalloproteinase inhibitors with multitarget neuroprotective activity. Eur J Med Chem. 2021;210: 113061. https://doi.org/10.1016/j.ejmech.2020.113061.

    Article  CAS  PubMed  Google Scholar 

  9. Bush AI. Metals and neuroscience. Curr Opin Chem Biol. 2000;4:184–91.

    Article  CAS  PubMed  Google Scholar 

  10. Moyano P, Vicente-Zurdo D, Blázquez-Barbadillo C, Menéndez JC, González JF, Rosales-Conrado N, del Pino J. Neuroprotective action of multitarget 7-aminophenanthridin-6(5H)-one derivatives against metal-induced cell death and oxidative stress in SN56 cells. ACS Chem Neurosci. 2021;12:3358–72. https://doi.org/10.1021/acschemneuro.1c00333.

    Article  CAS  PubMed  Google Scholar 

  11. Vicente-Zurdo D, Romero-Sánchez I, Rosales-Conrado N, León-González ME, Madrid Y. Ability of selenium species to inhibit metal-induced Aβ aggregation involved in the development of Alzheimer’s disease. Anal Bioanal Chem. 2020;412:6485–97. https://doi.org/10.1007/s00216-020-02644-2.

    Article  CAS  PubMed  Google Scholar 

  12. Gao N, Du Z, Guan Y, Dong K, Ren J, Qu X. Chirality-selected chemical modulation of amyloid aggregation. J Am Chem Soc. 2019;141:6915–21. https://doi.org/10.1021/jacs.8b12537.

    Article  CAS  PubMed  Google Scholar 

  13. Piubelli L, Murtas G, Rabattoni V, Pollegioni L. The role of D-amino acids in Alzheimer’s disease. Journal of Alzheimer’s Disease. 2021;80:475–92.

    Article  CAS  PubMed  Google Scholar 

  14. Bastings JJAJ, van Eijk HM, Damink SWO, Rensen SS. D-amino acids in health and disease: a focus on cancer. Nutrients. 2019;11:2205–22. https://doi.org/10.3390/nu11092205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun D, Zhang W, Yu Q, Chen X, Xu M, Zhou Y, Liu J. Chiral penicillamine-modified selenium nanoparticles enantioselectively inhibit metal-induced amyloid β aggregation for treating Alzheimer’s disease. J Colloid Interface Sci. 2017;505:1001–10. https://doi.org/10.1016/j.jcis.2017.06.083.

    Article  CAS  PubMed  Google Scholar 

  16. Genchi G. An overview on d-amino acids. Amino Acids. 2017;49:1521–33. https://doi.org/10.1007/s00726-017-2459-5.

    Article  CAS  PubMed  Google Scholar 

  17. Fujii N, Takata T, Fujii N, Aki K, Sakaue H. D-Amino acids in protein: the mirror of life as a molecular index of aging. Biochimica et Biophysica Acta - Proteins and Proteomics. 2018;1866:840–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ha S, Kim I, Takata T, Kinouchi T, Isoyama M, Suzuki M, Fujii N. Identification of D-amino acid-containing peptides in human serum. PLoS ONE. 2017;12: e0189972. https://doi.org/10.1371/journal.pone.0189972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Readel ER, Wey M, Armstrong DW. Rapid and selective separation of amyloid beta from its stereoisomeric point mutations implicated in neurodegenerative Alzheimer’s disease. Anal Chim Acta. 2021;1163: 338506. https://doi.org/10.1016/j.aca.2021.338506.

    Article  CAS  PubMed  Google Scholar 

  20. Seckler JM, Lewis SJ. Advances in D-amino acids in neurological research. Int J Mol Sci. 2020;21:1–20. https://doi.org/10.3390/ijms21197325.

    Article  CAS  Google Scholar 

  21. Nuzzo T, Feligioni M, Cristino L, Pagano I, Marcelli S, Iannuzzi F, Imperatore R, D’Angelo L, Petrella C, Carella M, Pollegioni L, Sacchi S, Punzo D, de Girolamo P, Errico F, Canu N, Usiello A. Free D-aspartate triggers NMDA receptor-dependent cell death in primary cortical neurons and perturbs JNK activation, Tau phosphorylation, and protein SUMOylation in the cerebral cortex of mice lacking D-aspartate oxidase activity. Exp Neurol. 2019;317:51–65. https://doi.org/10.1016/j.expneurol.2019.02.014.

    Article  CAS  PubMed  Google Scholar 

  22. Azriel R, Gazit E. Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem. 2001;276:34156–61. https://doi.org/10.1074/jbc.M102883200.

    Article  CAS  PubMed  Google Scholar 

  23. Takayama T, Mochizuki T, Todoroki K, Min JZ, Mizuno H, Inoue K, Akatsu H, Noge I, Toyo’oka T,. A novel approach for LC-MS/MS-based chiral metabolomics fingerprinting and chiral metabolomics extraction using a pair of enantiomers of chiral derivatization reagents. Anal Chim Acta. 2015;898:73–84. https://doi.org/10.1016/j.aca.2015.10.010.

    Article  CAS  PubMed  Google Scholar 

  24. Derkinderen P, Scales TME, Hanger DP, Leung KY, Byers HL, Ward MA, Lenz C, Price C, Bird IN, Perera T, Kellie S, Williamson R, Noble W, van Etten RA, Leroy K, Brion JP, Reynolds CH, Anderton BH. Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci. 2005;25:6584–93. https://doi.org/10.1523/JNEUROSCI.1487-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. **ong S, Markesbery WR, Shao C, Lovell MA. Seleno-L-methionine protects against β-amyloid and iron/hydrogen peroxide-mediated neuron death. Antioxid Redox Signal. 2007;9:457–67. https://doi.org/10.1089/ars.2006.1363.

    Article  CAS  PubMed  Google Scholar 

  26. Rammes G, Parsons CG. The Aβ aggregation modulator MRZ-99030 prevents and even reverses synaptotoxic effects of Aβ1-42 on LTP even following serial dilution to a 500:1 stoichiometric excess of Aβ1-42, suggesting a beneficial prion-like seeding mechanism. Neuropharmacology. 2020;179: 108267. https://doi.org/10.1016/j.neuropharm.2020.108267.

    Article  CAS  PubMed  Google Scholar 

  27. Wu S-Z, Bodles AM, Porter MM, Griffin ST, Basile AS, Barger SW. Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide. J Neuroinflammation. 2004;1:1–11. https://doi.org/10.1186/1742-2094-1-2.

    Article  Google Scholar 

  28. Abbas M. Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in Alzheimer’s patients. Polymers (Basel). 2021;13:1051. https://doi.org/10.3390/polym13071051.

    Article  CAS  PubMed  Google Scholar 

  29. Yang L, Wang W, Chen J, Wang N, Zheng G. A comparative study of resveratrol and resveratrol-functional selenium nanoparticles: inhibiting amyloid β aggregation and reactive oxygen species formation properties. Journal of Biomedical Materials Research - Part A. 2018;106:3034–41. https://doi.org/10.1002/jbm.a.36493.

    Article  CAS  PubMed  Google Scholar 

  30. Schweizer U, Bräuer AU, Köhrle J, Nitsch R, Savaskan NE. Selenium and brain function: a poorly recognized liaison. Brain Res Rev. 2004;45:164–78. https://doi.org/10.1016/j.brainresrev.2004.03.004.

    Article  CAS  PubMed  Google Scholar 

  31. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9:53. https://doi.org/10.3390/pharmaceutics9040053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu S, Xu X, Feng J, Liu M, Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm. 2019;560:282–93. https://doi.org/10.1016/j.ijpharm.2019.02.012.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int J Biol Macromol. 2019;130:515–26. https://doi.org/10.1016/j.ijbiomac.2019.02.156.

    Article  CAS  PubMed  Google Scholar 

  34. Vicente-Zurdo D, Gómez-Gómez B, Pérez-Corona MT, Madrid Y. Impact of fish growing conditions and cooking methods on selenium species in swordfish and salmon fillets. J Food Compos Anal. 2019;83: 103275. https://doi.org/10.1016/j.jfca.2019.103275.

    Article  CAS  Google Scholar 

  35. dos Santos M, da Silva Júnior FMR, Vicente-Zurdo D, Baisch PRM, Muccillo-Baisch AL, Madrid Y. Selenium and mercury concentration in drinking water and food samples from a coal mining area in Brazil. Environ Sci Pollut Res. 2019;26:15510–7. https://doi.org/10.1007/s11356-019-04942-4.

    Article  CAS  Google Scholar 

  36. Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/antioxidant imbalance in Alzheimer’s disease: therapeutic and diagnostic prospects. Oxid Med Cell Longev. 2018;2018:6435861. https://doi.org/10.1155/2018/6435861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nirmala C, Bisht MS, Bajwa HK, Santosh O. Bamboo: a rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci Technol. 2018;77:91–9. https://doi.org/10.1016/j.tifs.2018.05.003.

    Article  CAS  Google Scholar 

  38. Tamtaji OR, Heidari-soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, Tajabadi-Ebrahimi M, Asemi Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial. Clin Nutr. 2019;38:2569–75. https://doi.org/10.1016/j.clnu.2018.11.034.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang ZH, Wu QY, Zheng R, Chen C, Chen Y, Liu Q, Hoffmann PR, Ni JZ, Song GL. Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. J Neurosci. 2017;37:2449–62. https://doi.org/10.1523/JNEUROSCI.3229-16.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu F, Lai S, Tong H, Lakey PSJ, Shiraiwa M, Weller MG, Pöschl U, Kampf CJ. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Anal Bioanal Chem. 2017;409:2411–20. https://doi.org/10.1007/s00216-017-0188-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gómez-Mejía E, Mikkelsen LH, Rosales-Conrado N, León-González ME, Madrid Y. A combined approach based on matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles and liquid chromatography to determine polyphenols from grape residues. J Chromatogr A. 2021;1644: 462128. https://doi.org/10.1016/j.chroma.2021.462128.

    Article  CAS  PubMed  Google Scholar 

  42. Xu N, Chen G, Liu H. Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules. 2017;22:2066. https://doi.org/10.3390/molecules22122066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation (PID2020-114714RB-I00) and the Community of Madrid and European funding from FSE and FEDER programmes (S2018/BAA-4393, PB2018/BAA-4393- AVANSECAL-II-CM). David Vicente-Zurdo acknowledges the Spanish Ministry of Science, Innovation and Universities for funding through a pre-doctoral grant (FPU18/00573). Esther Gómez-Mejía acknowledges Complutense University through a pre-doctoral grant (CT17/17-CT18/17).

Author information

Authors and Affiliations

Authors

Contributions

David Vicente-Zurdo: methodology, formal analysis, investigation, data curation, writing—original draft and writing—review and editing; Sandra Rodríguez-Blázquez: methodology, formal analysis, investigation, data curation and writing—review and editing; Esther Gómez-Mejía: methodology and writing—review and editing; Noelia Rosales-Conrado: conceptualization, methodology, investigation and writing—review and editing; María Eugenia León-González: conceptualization, methodology, investigation and writing—review and editing; Yolanda Madrid: conceptualization, methodology, investigation, writing—review and editing and funding acquisition

Corresponding authors

Correspondence to David Vicente-Zurdo or Noelia Rosales-Conrado.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Award

This work received the “Best Poster” award, sponsored by Analytical and Bioanalytical Chemistry, in session S9 “Bioanalytical Chemistry in Health and Food Safety” organized in the framework of the XXXVIII Biennial Meeting of the Spanish Royal Society of Chemistry (RSEQ), 27th–30th June 2022, Granada, Spain.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Parts of this work were presented at the XXXVIII Biennial Meeting of the Spanish Royal Society of Chemistry (RSEQ), Granada (Spain), in June 2022, and have been awarded with an ABC Best Poster Award.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente-Zurdo, D., Rodríguez-Blázquez, S., Gómez-Mejía, E. et al. Neuroprotective activity of selenium nanoparticles against the effect of amino acid enantiomers in Alzheimer’s disease. Anal Bioanal Chem 414, 7573–7584 (2022). https://doi.org/10.1007/s00216-022-04285-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04285-z

Keywords

Navigation