Log in

LA-ICP-MS bioimaging demonstrated disturbance of metal ions in the brain of Parkinson’s disease model mouse undergoing manganese-enhanced MRI

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Manganese-enhanced MRI (MEMRI) is a powerful tool to study neuronal activity and microarchitecture in vivo. Yet the influence of exogenous manganese on the brain of the Parkinson’s disease (PD) model mouse is poorly understood. Laser ablation connected to inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging for tissue section is an ideal tool to simultaneously analyze the metabolism of endogenous metal ions. In this study, DJ-1 knockout PD model mice were subjected to an MnCl2 saline treatment and the distribution of Mn and several other endogenous metal ions in brain regions was assessed by MEMRI and LA-ICP-MS imaging. The results demonstrated that Mn mainly deposited in subcortical regions, such as ventricles, hippocampus (HC), medial preoptic nucleus (MPO), lateral septal nucleus (LS), and ventromedial hypothalamic nucleus (VMH). The enhanced signal-to-noise ratio (S/N) determined by MEMRI for Mn is closely related to the signal in LA-ICP-MS imaging. Significantly, the treatment of MnCl2 disturbs the homeostasis of iron, zinc, copper, and calcium in the DJ-1 mouse, which could result in more severe symptoms of PD. Therefore, the application of MEMRI in the study of neurological disease must be made with caution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cg/RS:

Cingulate cortex/retrosplenial cortex

M1/2:

Motor cortex

S1:

Primary somatosensory cortex

S2:

Secondary somatosensory cortex

GI/DI:

Granular insular cortex/dysgranular insular cortex

AI:

Agranular insular cortex

Pir:

Piriform cortex

LS:

Lateral septal nucleus

MPO:

Medial preoptic nucleus

HC:

Hippocampal

VMH:

Ventromedial hypothalamic nucleus

SNR:

Substantia nigra, reticular part

CPu:

Caudate-putamen

IL:

Infralimbic cortex

DP:

Dorsal peduncular cortex

VP:

Ventral pallidum

DTT:

Dorsal tenia tecta

Shi:

Septohippocampal nucleus

LV:

Llateral ventricle

PrL:

Prelimbic cortex

CB:

Cell bridges of the ventral striatum

SI:

Substantia innominata

PD:

Parkinson’s disease

MEMRI:

Manganese-enhanced magnetic resonance imaging

LA-ICP-MS:

Laser ablation connected to inductively coupled plasma mass spectrometry

References

  1. Viseux FJF, Delval A, Defebvre L, Simoneau M. Postural instability in Parkinson's disease: review and bottom-up rehabilitative approaches. Neurophysiologie clinique = Clinical neurophysiology. 2020;50(6):479–487.

  2. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.

    Article  Google Scholar 

  3. Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006;7(3):207–19.

    Article  CAS  Google Scholar 

  4. Yamashita S, Mori A, Kimura E, Mita S, Maeda Y, Hirano T, et al. DJ-1 forms complexes with mutant SOD1 and ameliorates its toxicity. J Neurochem. 2010;113(4):860–70.

    Article  CAS  Google Scholar 

  5. Fitzgerald JC, Plun-Favreau H. Emerging pathways in genetic Parkinson’s disease: autosomal-recessive genes in Parkinson’s disease–a common pathway? FEBS J. 2008;275(23):5758–66.

    Article  CAS  Google Scholar 

  6. Cali T, Ottolini D, Brini M. Calcium signaling in Parkinson’s disease. Cell Tissue Res. 2014;357(2):439–54.

    Article  CAS  Google Scholar 

  7. Ceccom J, Halley H, Daumas S, Lassalle JM. A specific role for hippocampal mossy fiber’s zinc in rapid storage of emotional memories. Learn Mem. 2014;21(5):287–97.

    Article  CAS  Google Scholar 

  8. Martins AC, Jr., Morcillo P, Ijomone OM, Venkataramani V, Harrison FE, Lee E, et al. New insights on the role of manganese in Alzheimer's disease and Parkinson's disease. International journal of environmental research and public health. 2019;16(19).

  9. Golub MS, Hogrefe CE, Germann SL, Tran TT, Beard JL, Crinella FM, et al. Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicol Teratol. 2005;27(4):615–27.

    Article  CAS  Google Scholar 

  10. Bedenk BT, Almeida-Corrêa S, Jurik A, Dedic N, Grünecker B, Genewsky AJ, et al. Mn2+ dynamics in manganese-enhanced MRI (MEMRI): Cav1.2 channel-mediated uptake and preferential accumulation in projection terminals. NeuroImage. 2018;169:374–82.

  11. Hankir MK, Parkinson JR, Bloom SR, Bell JD. The effects of glutamate receptor agonists and antagonists on mouse hypothalamic and hippocampal neuronal activity shown through manganese enhanced MRI. Neuroimage. 2012;59(2):968–78.

    Article  CAS  Google Scholar 

  12. Itoh K, Sakata M, Watanabe M, Aikawa Y, Fujii H. The entry of manganese ions into the brain is accelerated by the activation of N-methyl-d-aspartate receptors. Neuroscience. 2008;154(2):732–40.

    Article  CAS  Google Scholar 

  13. Pautler RG. In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed. 2004;17(8):595–601.

    Article  CAS  Google Scholar 

  14. Chan KC, Fan S-J, Chan RW, Cheng JS, Zhou IY, Wu EX. In vivo visuotopic brain map** with manganese-enhanced MRI and resting-state functional connectivity MRI. Neuroimage. 2014;90:235–45.

    Article  CAS  Google Scholar 

  15. Lee JH, Silva AC, Merkle H, Koretsky AP. Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magn Reson Med. 2005;53(3):640–8.

    Article  CAS  Google Scholar 

  16. Daoust A, Barbier EL, Bohic S. Manganese enhanced MRI in rat hippocampus: a correlative study with synchrotron X-ray microprobe. Neuroimage. 2013;64:10–8.

    Article  CAS  Google Scholar 

  17. Lv Y, Li T, Guo C, Sun C, Tang F, Huang L, et al. A high-performance bio-tissue imaging method using air flow-assisted desorption electrospray ionization coupled with a high-resolution mass spectrometer. Chin Chem Lett. 2019;30(2):461–4.

    Article  CAS  Google Scholar 

  18. Zhao C, Guo L, Dong J, Cai Z. Mass spectrometry imaging-based multi-modal technique: Next-generation of biochemical analysis strategy. The Innovation. 2021;2(4):100151.

  19. Sabine Becker J, Matusch A, Palm C, Salber D, Morton KA, Susanne BJ. Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics. 2010;2(2):104–11.

    Article  Google Scholar 

  20. Pozebon D, Scheffler GL, Dressler VL. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. J Anal At Spectrom. 2017;32(5):890–919.

    Article  CAS  Google Scholar 

  21. Liu J, Zheng L, Wei X, Wang B, Chen H, Chen M, et al. Quantitative imaging of trace elements in brain sections of Alzheimer’s disease mice with laser ablation inductively coupled plasma-mass spectrometry. Microchemical Journal. 2022;172:106912.

  22. Yu X, Wadghiri YZ, Sanes DH, Turnbull DH. In vivo auditory brain map** in mice with Mn-enhanced MRI. Nat Neurosci. 2005;8(7):961–8.

    Article  CAS  Google Scholar 

  23. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Guide for the Care and Use of Laboratory Animals, 8th ed.: National Academies Press (US), Washington (DC); 2011.

  24. Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, et al. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev. 2010;29(1):156–75.

    Article  CAS  Google Scholar 

  25. Paul B, Hare DJ, Bishop DP, Paton C, Nguyen VT, Cole N, et al. Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging. Chem Sci. 2015;6(10):5383–93.

    Article  CAS  Google Scholar 

  26. Egger AE, Theiner S, Kornauth C, Heffeter P, Berger W, Keppler BK, et al. Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics. 2014;6(9):1616–25.

    Article  CAS  Google Scholar 

  27. Grünecker B, Kaltwasser SF, Zappe AC, Bedenk BT, Bicker Y, Spoormaker VI, et al. Regional specificity of manganese accumulation and clearance in the mouse brain: implications for manganese-enhanced MRI. NMR Biomed. 2013;26(5):542–56.

    Article  Google Scholar 

  28. Deng W, Faiq MA, Liu C, Adi V, Chan KC. Applications of manganese-enhanced magnetic resonance imaging in ophthalmology and visual neuroscience. Frontiers in Neural Circuits. 2019;13.

  29. Stüber C, Morawski M, Schäfer A, Labadie C, Wähnert M, Leuze C, et al. Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage. 2014;93:95–106.

    Article  Google Scholar 

  30. Wang X, Qian J, He R, Wei L, Liu N, Zhang Z, et al. Delayed changes inT1-weighted signal intensity in a rat model of 15-minute transient focal ischemia studied by magnetic resonance imaging/spectroscopy and synchrotron radiation X-ray fluorescence. Magn Reson Med. 2006;56(3):474–80.

    Article  CAS  Google Scholar 

  31. Silva AC, Lee JH, Aoki I, Koretsky AP. Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed. 2004;17(8):532–43.

    Article  CAS  Google Scholar 

  32. Maidan I, Nieuwhof F, Bernad-Elazari H, Reelick MF, Bloem BR, Giladi N, et al. The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: an fNIRS study. Neurorehabil Neural Repair. 2016;30(10):963–71.

    Article  Google Scholar 

  33. Vandenbossche J, Deroost N, Soetens E, Coomans D, Spildooren J, Vercruysse S, et al. Freezing of gait in Parkinson’s disease: disturbances in automaticity and control. Front Hum Neurosci. 2012;6:356.

    PubMed  Google Scholar 

  34. Mostile G, Cicero CE, Giuliano L, Zappia M, Nicoletti A. Iron and Parkinson’s disease: a systematic review and meta-analysis. Mol Med Rep. 2017;15(5):3383–9.

    Article  CAS  Google Scholar 

  35. Erikson KM, Syversen T, Steinnes E, Aschner M. Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. J Nutr Biochem. 2004;15(6):335–41.

    Article  CAS  Google Scholar 

  36. Hanganu A, Provost J-S, Monchi O. Neuroimaging studies of striatum in cognition part II: Parkinson's disease. Frontiers in Systems Neuroscience. 2015;9(138).

  37. Bouchard TP, Malykhin N, Martin WRW, Hanstock CC, Emery DJ, Fisher NJ, et al. Age and dementia-associated atrophy predominates in the hippocampal head and amygdala in Parkinson’s disease. Neurobiol Aging. 2008;29(7):1027–39.

    Article  Google Scholar 

  38. Bergantin BL. The interplay between depression and Parkinson´s disease: learning the link through Ca2+/cAMP signaling. Curr Protein Pept Sci. 2020;21(12):1223–8.

    Article  CAS  Google Scholar 

  39. Shetty MS, Sharma M, Sajikumar S. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell. 2017;16(1):136–48.

    Article  CAS  Google Scholar 

  40. Harischandra DS, Ghaisas S, Zenitsky G, ** H, Kanthasamy A, Anantharam V, et al. Manganese-induced neurotoxicity: new insights into the triad of protein misfolding, mitochondrial impairment, and neuroinflammation. Front Neurosci. 2019;13:654.

    Article  Google Scholar 

  41. Calne DB, Chu NS, Huang CC, Lu CS, Olanow W. Manganism and idiopathic parkinsonism: similarities and differences. Neurology. 1994;44(9):1583–6.

    Article  CAS  Google Scholar 

  42. Pajarillo E, Johnson J Jr, Rizor A, Nyarko-Danquah I, Adinew G, Bornhorst J, et al. Astrocyte-specific deletion of the transcription factor Yin Yang 1 in murine substantia nigra mitigates manganese-induced dopaminergic neurotoxicity. J Biol Chem. 2020;295(46):15662–76.

    Article  CAS  Google Scholar 

  43. Zhu XH, Qiao H, Du F, **ong Q, Liu X, Zhang X, et al. Quantitative imaging of energy expenditure in human brain. Neuroimage. 2012;60(4):2107–17.

    Article  Google Scholar 

  44. Kim J, Wessling-Resnick M. Iron and mechanisms of emotional behavior. J Nutr Biochem. 2014;25(11):1101–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Lanqun Mao from Bei**g Normal University for inspiring discussion during this work, and Prof Zongxiu Nie from the Institute of Chemistry, Chinese Academy of Sciences for their cryo-cutting devices.

Funding

National Natural Science Foundation of China (Grant Nos. 21790390, 21790392, 22004121, and 21927804). China Postdoctoral Science Foundation, Grant No. 2020M680675, for T. Fang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Lei or Yao Zhao.

Ethics declarations

Ethics approval

All animal experiments were approved by the Institutional Animal Care and Use Committee of Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (protocol number: APM20028A).

Competing interests

The authors declare no competing interests.

Source of biological material

DJ-1 knockout mice (C57BL/6 J background) were kindly provided by the Experimental Animal Center of Peking University and bred, maintained at Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences.

Statement on animal welfare

All animal experiments were performed according to the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. All efforts were made to minimize the number of animals used and their suffering.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Promising Early-Career (Bio)Analytical Researchers with guest editors Antje J. Baeumner, María C. Moreno-Bondi, Sabine Szunerits, and Qiuquan Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3970 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Chen, W., Cheng, Y. et al. LA-ICP-MS bioimaging demonstrated disturbance of metal ions in the brain of Parkinson’s disease model mouse undergoing manganese-enhanced MRI. Anal Bioanal Chem 414, 5561–5571 (2022). https://doi.org/10.1007/s00216-022-03994-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-03994-9

Keywords

Navigation