Log in

Construction of polythiophene-derivative films as a novel electrochemical sensor for highly sensitive detection of nitrite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Herein, a novel, convenient, and highly selective electrochemical sensor for determination of nitrite based on a polythiophene-derivative film-modified glassy carbon electrode (GCE) was established. In this work, 2,5-di-thiophen-3-yl-thiazolo[5,4-d]thiazole (DTT), a novel thiophene derivative, was synthesized and used to form an original and excellent polymer film (PolyDTTF) on GCE through one-step electropolymerization for the first time. The modified electrodes were characterized by electron microscopy (SEM), Fourier transform infra-red spectroscopy (FT-IR), UV-visible spectra, Raman spectroscopy, and electrochemical technologies, in which the electrochemical sensor based on PolyDTTF was successfully constructed and demonstrated a significant electrocatalytic effect on nitrite. The influence of pH value, electrodeposition scanning times, scanning speed, and potential on the electrochemical behavior of nitrite were investigated in detail. Furthermore, the nitrite sensor exhibits excellent responses proportional to nitrite concentrations (R2 = 0.9972) over a concentration range of 5.5 × 10−9 ~ 3.5 × 10−5 M with a detection limit (LOD) of 2 nM, and has extremely good anti-interference ability for nitrite detection. This proposed sensor can be used to detect nitrite in actual samples, opening the possibility for applications in the food industry and environmental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fan Z, Ding Z, Zhang X, Wu S, Wang M, Tong Z. Construction of cobalt porphyrin/strontium tantalite nanocomposite as a novel sensor for the detection of nitrite. Mater Lett. 2019;253:281–4. https://doi.org/10.1016/j.matlet.2019.06.088.

    Article  CAS  Google Scholar 

  2. Chen H, Yang T, Liu F, Li W. Electrodeposition of gold nanoparticles on cu-based metal-organic framework for the electrochemical detection of nitrite. Sens Actuators B-Chem. 2019;286:401–7. https://doi.org/10.1016/j.snb.2018.10.036.

    Article  CAS  Google Scholar 

  3. Diouf A, El Bari N, Bouchikhi B. A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta. 2020;209:120577. https://doi.org/10.1016/j.talanta.2019.120577.

    Article  CAS  PubMed  Google Scholar 

  4. Lete C, Chelu M, Marin M, Mihaiu S, Preda S, Anastasescu M, et al. Nitrite electrochemical sensing platform based on tin oxide films. Sens Actuators B-Chem. 2020;316:128102. https://doi.org/10.1016/j.snb.2020.128102.

    Article  CAS  Google Scholar 

  5. Sahoo S, Sahoo PK, Sharma A, Satpati AK. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sens Actuators B-Chem. 2020;309:127763. https://doi.org/10.1016/j.snb.2020.127763.

    Article  CAS  Google Scholar 

  6. Vishnuvardhan V, Kala R, Prasada RT. Chemical switch based reusable dual optoelectronic sensor for nitrite. Anal Chim Acta. 2008;623(1):53–8. https://doi.org/10.1016/j.aca.2008.05.075.

    Article  CAS  PubMed  Google Scholar 

  7. Altunay N, Gürkan R, Olgaç E. Development of a new methodology for indirect determination of nitrite, nitrate, and Total nitrite in the selected two groups of foods by spectrophotometry. Food Anal Methods. 2017;10(7):2194–206. https://doi.org/10.1007/s12161-016-0789-7.

    Article  Google Scholar 

  8. Bru M, Burguete MI, Galindo F, Luis SV, Marín MJ, Vigara L. Cross-linked poly(2-hydroxyethylmethacrylate) films doped with 1,2-diaminoanthraquinone (DAQ) as efficient materials for the colorimetric sensing of nitric oxide and nitrite anion. Tetrahedron Lett. 2006;47(11):1787–91. https://doi.org/10.1016/j.tetlet.2006.01.030.

    Article  CAS  Google Scholar 

  9. Shariati-Rad M, Irandoust M, Mohammadi S. Spectrophotometric determination of nitrite in soil and water using cefixime and central composite design. Spectrochim Acta A Mol Biomol Spectrosc. 2015;149:190–5. https://doi.org/10.1016/j.saa.2015.04.083.

    Article  CAS  PubMed  Google Scholar 

  10. Lin B, Xu J, Lin K, Li M, Lu M. Low-cost automatic sensor for in situ colorimetric detection of phosphate and nitrite in agricultural water. ACS Sens. 2018;3(12):2541–9. https://doi.org/10.1021/acssensors.8b00781.

    Article  CAS  PubMed  Google Scholar 

  11. Freitas CB, Moreira RC, de Oliveira Tavares MG, Coltro WKT. Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection. Talanta. 2016;147:335–41. https://doi.org/10.1016/j.talanta.2015.09.075.

    Article  CAS  PubMed  Google Scholar 

  12. Della Betta F, Vitali L, Fett R, Costa ACO. Development and validation of a sub-minute capillary zone electrophoresis method for determination of nitrate and nitrite in baby foods. Talanta. 2014;122:23–9. https://doi.org/10.1016/j.talanta.2014.01.006.

    Article  CAS  PubMed  Google Scholar 

  13. Martínková E, Křžek T, Coufal P. Determination of nitrites and nitrates in drinking water using capillary electrophoresis. Chem Pap. 2014;68(8):1008–14. https://doi.org/10.2478/s11696-014-0548-4.

    Article  CAS  Google Scholar 

  14. Chamandust S, Mehrasebi MR, Kamali K, Solgi R, Taran J, Nazari F, et al. Simultaneous determination of nitrite and nitrate in Milk samples by ion chromatography method and estimation of dietary intake. Int J Food Prop. 2016;19(9):1983–93. https://doi.org/10.1080/10942912.2015.1091007.

    Article  CAS  Google Scholar 

  15. Lopez-Moreno C, Perez IV, Urbano AM. Development and validation of an ionic chromatography method for the determination of nitrate, nitrite and chloride in meat. Food Chem. 2016;194:687–94. https://doi.org/10.1016/j.foodchem.2015.08.017.

    Article  CAS  PubMed  Google Scholar 

  16. Kodamatani H, Yamazaki S, Saito K, Tomiyasu T, Komatsu Y. Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J Chromatogr A. 2009;1216(15):3163–7. https://doi.org/10.1016/j.chroma.2009.01.096.

    Article  CAS  PubMed  Google Scholar 

  17. Lin Z, Dou X, Li H, Ma Y, Lin J-M. Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate. Talanta. 2015;132:457–62. https://doi.org/10.1016/j.talanta.2014.09.046.

    Article  CAS  PubMed  Google Scholar 

  18. Wu J, Wang X, Lin Y, Zheng Y, Lin J-M. Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip. Talanta. 2016;154:73–9. https://doi.org/10.1016/j.talanta.2016.03.062.

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Cheng C, Yang Y, Dun X, Gao J, ** X-J. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite. J Alloys Compd. 2019;798:764–72. https://doi.org/10.1016/j.jallcom.2019.05.137.

    Article  CAS  Google Scholar 

  20. Liu Z, Manikandan VS, Chen A. Recent advances in nanomaterial-based electrochemical sensing of nitric oxide and nitrite for biomedical and food research. Curr Opin in Electrochem. 2019;16:127–33. https://doi.org/10.1016/j.coelec.2019.05.013.

    Article  CAS  Google Scholar 

  21. Jilani BS, Mounesh MP, Mruthyunjayachari CD, Reddy KRV. Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study. Mater Chem Phys. 2020;239:121920. https://doi.org/10.1016/j.matchemphys.2019.121920.

    Article  CAS  Google Scholar 

  22. Suma BP, Adarakatti PS, Kempahanumakkagari SK, Malingappa P. A new polyoxometalate/rGO/Pani composite modified electrode for electrochemical sensing of nitrite and its application to food and environmental samples. Mater Chem Phys. 2019;229:269–78. https://doi.org/10.1016/j.matchemphys.2019.02.087.

    Article  CAS  Google Scholar 

  23. Lei W, Si W, Xu Y, Gu Z, Hao Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta. 2014;181(7):707–22. https://doi.org/10.1007/s00604-014-1160-6.

    Article  CAS  Google Scholar 

  24. Li X. Graphene-TiO2 nanocomposite-modified screen-printed electrode for sensitive nitrite determination in hot spring water. Int J Electrochem Sci. 2018;13:315–23. https://doi.org/10.20964/2018.01.38.

    Article  CAS  Google Scholar 

  25. Velmurugan S, Palanisamy S, Yang TCK. Single-crystalline SnS2 nano-hexagons based non-enzymatic electrochemical sensor for detection of carcinogenic nitrite in food samples. Sens Actuators B-Chem. 2020;316:128106. https://doi.org/10.1016/j.snb.2020.128106.

    Article  CAS  Google Scholar 

  26. Hu J, Zhang J, Zhao Z, Liu J, Shi J, Li G, et al. Synthesis and electrochemical properties of rGO-MoS2 heterostructures for highly sensitive nitrite detection. Ionics. 2018;24(2):577–87. https://doi.org/10.1007/s11581-017-2202-y.

    Article  CAS  Google Scholar 

  27. Gholivand M-B, Jalalvand AR, Goicoechea HC. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles. Mater Sci Eng C. 2014;40:109–20. https://doi.org/10.1016/j.msec.2014.03.044.

    Article  CAS  Google Scholar 

  28. Deng K, Zhou J, Huang H, Ling Y, Li C. Electrochemical determination of nitrite using a reduced graphene oxide–multiwalled carbon nanotube-modified glassy carbon electrode. Anal Lett. 2016;49(18):2917–30. https://doi.org/10.1080/00032719.2016.1163364.

    Article  CAS  Google Scholar 

  29. Wang Y. Bi C-y. a novel nitrite biosensor based on direct electron transfer of hemoglobin immobilized on a graphene oxide/au nanoparticles/multiwalled carbon nanotubes nanocomposite film. RSC Adv. 2014;4(60):31573–80. https://doi.org/10.1039/C4RA05237D.

    Article  CAS  Google Scholar 

  30. Zhang S, Tang Y, Chen Y, Zheng J. Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing. J Electroanal Chem. 2019;839:195–201. https://doi.org/10.1016/j.jelechem.2019.03.036.

    Article  CAS  Google Scholar 

  31. Cosnier S, Holzinger M. Electrosynthesized polymers for biosensing. Chem Soc Rev. 2011;40(5):2146–56. https://doi.org/10.1039/C0CS00090F.

    Article  CAS  PubMed  Google Scholar 

  32. Reginato G, Mordini A, Zani L, Calamante M, Dessì A. Photoactive compounds based on the Thiazolo[5,4-d]thiazole Core and their application in organic and hybrid photovoltaics. Eur J Org Chem. 2016;2016(2):233–51. https://doi.org/10.1002/ejoc.201501237.

    Article  CAS  Google Scholar 

  33. Jung IH, Yu J, Jeong E, Kim J, Kwon S, Kong H, et al. Synthesis and photovoltaic properties of Cyclopentadithiophene-based low-bandgap copolymers that contain Electron-withdrawing Thiazole derivatives. Chem-Eur J. 2010;16(12):3743–52. https://doi.org/10.1002/chem.200903064.

    Article  CAS  PubMed  Google Scholar 

  34. Ahumada JC, Leyton P, Aristizabal JA, Soto JP. Synthesis and morphological characterization of a new conjugated polymer based on benzobisoxazole and thiophene systems. Polym Bull. 2018;75(2):597–610. https://doi.org/10.1007/s00289-017-2057-4.

    Article  CAS  Google Scholar 

  35. Zhang X-C, Wu S-H, Jia S-Y, Wang C, Sun S-W, Wang X-M, et al. Turning thiophene contaminant into polymers from wastewater by persulfate and CuO. Chem Eng J. 2020;397:125351. https://doi.org/10.1016/j.cej.2020.125351.

    Article  CAS  Google Scholar 

  36. Bevk D, Marin L, Lutsen L, Vanderzande D, Maes W. Thiazolo[5,4-d]thiazoles – promising building blocks in the synthesis of semiconductors for plastic electronics. RSC Adv. 2013;3(29):11418–31. https://doi.org/10.1039/C3RA40851E.

    Article  CAS  Google Scholar 

  37. Dağcı K, Alanyalıoğlu M. Electrochemical preparation of polymeric films of pyronin Y and its electrolcatalytic properties for amperometric detection of nitrite. J Electroanal Chem. 2013;711:17–24. https://doi.org/10.1016/j.jelechem.2013.10.016.

    Article  CAS  Google Scholar 

  38. Ghanei-Motlagh M, Taher MA. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron. 2018;109:279–85. https://doi.org/10.1016/j.bios.2018.02.057.

    Article  CAS  PubMed  Google Scholar 

  39. Kamyabi MA, Aghajanloo F. Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. J Electroanal Chem. 2008;614(1):157–65. https://doi.org/10.1016/j.jelechem.2007.11.026.

    Article  CAS  Google Scholar 

  40. Abo-Hamad A, AlSaadi MA, Hashim MA. Eutectic mixture-functionalized carbon nanomaterials for selective amperometric detection of nitrite using modified glassy carbon electrode. J Electroanal Chem. 2018;812:107–14. https://doi.org/10.1016/j.jelechem.2018.01.052.

    Article  CAS  Google Scholar 

  41. Wang H, Wen F, Chen Y, Sun T, Meng Y, Zhang Y. Electrocatalytic determination of nitrite based on straw cellulose/molybdenum sulfide nanocomposite. Biosens Bioelectron. 2016;85:692–7. https://doi.org/10.1016/j.bios.2016.05.078.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Zhao Y, Yuan S, Wang H, He C. Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sens Actuators B-Chem. 2013;185:602–7. https://doi.org/10.1016/j.snb.2013.05.059.

    Article  CAS  Google Scholar 

  43. Pan F, Chen D, Zhuang X, Wu X, Luan F, Zhang S, et al. Fabrication of gold nanoparticles/l-cysteine functionalized graphene oxide nanocomposites and application for nitrite detection. J Alloys Compd. 2018;744:51–6. https://doi.org/10.1016/j.jallcom.2018.02.053.

    Article  CAS  Google Scholar 

  44. Duan C, Bai W, Zheng J. Non-enzymatic sensors based on a glassy carbon electrode modified with au nanoparticles/polyaniline/SnO2 fibrous nanocomposites for nitrite sensing. New J Chem. 2018;42(14):11516–24. https://doi.org/10.1039/c8nj01461b.

    Article  CAS  Google Scholar 

  45. Zhang Y, Wen F, Tan J, Jiang C, Zhu M, Chen Y, et al. Highly efficient electrocatalytic oxidation of nitrite by electrodeposition of au nanoparticles on molybdenum sulfide and multi-walled carbon nanotubes. J Electroanal Chem. 2017;786:43–9. https://doi.org/10.1016/j.jelechem.2017.01.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are deeply grateful for the support of National Natural Science Foundation of China (No. 21705084), the Natural Science Foundation of Shandong Province of China (No. ZR2017BB074), National Training Program of Innovation and Entrepreneurship for Undergraduates (No. S202010431027), Qilu University of Technology of Training Program of Innovation and Entrepreneurship for Undergraduates (No. xj201910431125), the Innovation Team of **an City (2018GXRC004), and Special Funds for Taishan Scholars Project.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Yishan Fang, Yunjun Yang or Bo Cui.

Ethics declarations

Conflict of interest

The authors have read the policy on conflicts of interest and declare no competing interests with other people or organizations.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 6745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Geng, C., Xu, X. et al. Construction of polythiophene-derivative films as a novel electrochemical sensor for highly sensitive detection of nitrite. Anal Bioanal Chem 413, 6639–6647 (2021). https://doi.org/10.1007/s00216-021-03630-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03630-y

Keywords

Navigation