Log in

Determination of citalopram in fish brain tissue: benefits of coupling laser diode thermal desorption with low- and high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recent state-of-the-art methods developed for the analysis of polar xenobiotics from different types of biological matrices usually employ liquid chromatography with mass spectrometry. However, there are limitations when a small amount of sample mass is available. For example, individual benthic invertebrates or fish tissue samples often weigh less than 100 mg (e.g., brain, liver) but are necessary to understand environmental fate and bioaccumulation dynamics. We developed ultra-fast methods based on a direct sample introduction technique. This included coupling laser diode thermal desorption with atmospheric pressure chemical ionization mass spectrometry (LDTD-APCI-MS). We then quantitated a common selective serotonin reuptake inhibitor (citalopram) in brain tissues of individual juvenile fish after in vivo exposure to environmentally relevant concentration. Two mass spectrometric methods based on low (LDTD-APCI-triple quadrupole (QqQ)-MS/MS) and high (LDTD-APCI-high-resolution product scan (HRPS)) resolutions were developed and evaluated. Individual instrument conditions were optimized to achieve an accurate and robust analytical method with minimum sample preparation requirements. We achieved very good recovery (97–108%) across the range of 1–100 ng g−1 for LDTD-APCI-HRPS. LDTD-APCI-QqQ-MS/MS showed poorer performance due to interferences from the matrix at the lowest concentration level. LDTD-APCI ionization was successfully validated for analysis of non-filtered sample extracts. Evaluation of final methods was performed for a set of real fish brain samples, including comparison of LDTD-APCI-HRPS with a previously validated LC-heated electrospray ionization-HRPS method. This new LDTD-APCI-HRPS method avoids the chromatographic step and provides important benefits such as analysis of limited sample masses, lower total sample volume (typically μL), and reduction in analysis time per sample run to a few seconds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall ABA. Fate and uptake of pharmaceuticals in soil–plant systems. J Agric Food Chem. 2014;62:816–25. https://doi.org/10.1021/jf404282y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agunbiade FO, Moodley B. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa. Environ Toxicol Chem. 2016;35:36–46. https://doi.org/10.1002/etc.3144.

    Article  CAS  PubMed  Google Scholar 

  3. Gualano MR, Bert F, Mannocci A, La Torre G, Zeppegno P, Siliquini R. Consumption of antidepressants in Italy: recent trends and their significance for public health. Psychiatr Serv. 2014;65:1226–31. https://doi.org/10.1176/appi.ps.201300510.

    Article  PubMed  Google Scholar 

  4. Ilyas S, Moncrieff J. Trends in prescriptions and costs of drugs for mental disorders in England, 1998-2010. Br J Psychiatry. 2012;200:393–8. https://doi.org/10.1192/bjp.bp.111.104257.

    Article  PubMed  Google Scholar 

  5. Státní ústav pro kontrolu léčiv. http://www.sukl.cz/. Accessed 22 Oct 2019.

  6. Mackulak T, Mosny M, Skubak J, Grabic R, Birosova L. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants. Environ Toxicol Pharmacol. 2015;39:969–73. https://doi.org/10.1016/j.etap.2015.02.018.

    Article  CAS  PubMed  Google Scholar 

  7. Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere. 2014;111:418–26. https://doi.org/10.1016/J.CHEMOSPHERE.2014.03.132.

    Article  CAS  PubMed  Google Scholar 

  8. Gurke R, Rößler M, Marx C, Diamond S, Schubert S, Oertel R, et al. Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant. Sci Total Environ. 2015;532:762–70. https://doi.org/10.1016/j.scitotenv.2015.06.067.

    Article  CAS  PubMed  Google Scholar 

  9. Bradley PM, Barber LB, Clark JM, Duris JW, Foreman WT, Furlong ET, et al. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach. Sci Total Environ. 2016;568:916–25. https://doi.org/10.1016/j.scitotenv.2016.06.104.

    Article  CAS  PubMed  Google Scholar 

  10. González Alonso S, Catalá M, Maroto RR, Gil JLR, de Miguel ÁG, Valcárcel Y. Pollution by psychoactive pharmaceuticals in the rivers of Madrid metropolitan area (Spain). Environ Int. 2010;36:195–201. https://doi.org/10.1016/j.envint.2009.11.004.

    Article  CAS  PubMed  Google Scholar 

  11. Mackuľak T, Bodík I, Hasan J, Grabic R, Golovko O, Vojs-Staňová A, et al. Dominant psychoactive drugs in the Central European region: a wastewater study. Forensic Sci Int. 2016;267:42–51. https://doi.org/10.1016/J.FORSCIINT.2016.08.016.

    Article  PubMed  Google Scholar 

  12. Mole RA, Brooks BW. Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. Environ Pollut. 2019:1019–31.

  13. Grabicova K, Lindberg RH, Östman M, Grabic R, Randak T, Joakim Larsson DG, et al. Tissue-specific bioconcentration of antidepressants in fish exposed to effluent from a municipal sewage treatment plant. Sci Total Environ. 2014;488:46–50. https://doi.org/10.1016/j.scitotenv.2014.04.052.

    Article  CAS  PubMed  Google Scholar 

  14. Grabicova K, Grabic R, Fedorova G, Fick J, Cerveny D, Kolarova J, et al. Bioaccumulation of psychoactive pharmaceuticals in fish in an effluent dominated stream. Water Res. 2017;124:654–62. https://doi.org/10.1016/j.watres.2017.08.018.

    Article  CAS  PubMed  Google Scholar 

  15. Grabicova K, Grabic R, Blaha M, Kumar V, Cerveny D, Fedorova G, et al. Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Res. 2015;72:145–53. https://doi.org/10.1016/j.watres.2014.09.018.

    Article  CAS  PubMed  Google Scholar 

  16. Cunha DL, Mendes MP, Marques M. Environmental risk assessment of psychoactive drugs in the aquatic environment. Environ Sci Pollut Res. 2019;26:78–90.

    Article  CAS  Google Scholar 

  17. Elliott S, Evans J. A 3-year review of new psychoactive substances in casework. Forensic Sci Int. 2014;243:55–60. https://doi.org/10.1016/J.FORSCIINT.2014.04.017.

    Article  CAS  PubMed  Google Scholar 

  18. Marchei E, Escuder D, Pallas CR, Garcia-Algar O, Gómez A, Friguls B, et al. Simultaneous analysis of frequently used licit and illicit psychoactive drugs in breast milk by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2011;55:309–16. https://doi.org/10.1016/J.JPBA.2011.01.028.

    Article  CAS  PubMed  Google Scholar 

  19. Mallett DN, Ramírez-Molina C. The use of partially porous particle columns for the routine, generic analysis of biological samples for pharmacokinetic studies in drug discovery by reversed-phase ultra-high performance liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal. 2009;49:100–7. https://doi.org/10.1016/J.JPBA.2008.09.041.

    Article  CAS  PubMed  Google Scholar 

  20. Ali AM, Rønning HT, Sydnes LK, Alarif WM, Kallenborn R, Al-Lihaibi SS. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea. Sci Total Environ. 2018;621:654–62. https://doi.org/10.1016/j.scitotenv.2017.11.298.

    Article  CAS  PubMed  Google Scholar 

  21. Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science (80-. )

  22. Erythropel HC, Zimmerman JB, De Winter TM, Petitjean L, Melnikov F, Lam CH, et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018;20:1929–61.

    Article  CAS  Google Scholar 

  23. Roy-Lachapelle A, Solliec M, Sinotte M, Deblois C, Sauvé S. Total analysis of microcystins in fish tissue using laser thermal desorption–atmospheric pressure chemical ionization–high-resolution mass spectrometry (LDTD-APCI-HRMS). J Agric Food Chem. 2015;63:7440–9. https://doi.org/10.1021/acs.jafc.5b02318.

    Article  CAS  PubMed  Google Scholar 

  24. Munoz G, Vo Duy S, Budzinski H, Labadie P, Liu J, Sauvé S. Quantitative analysis of poly- and perfluoroalkyl compounds in water matrices using high resolution mass spectrometry: optimization for a laser diode thermal desorption method. Anal Chim Acta. 2015;881:98–106. https://doi.org/10.1016/j.aca.2015.04.015.

    Article  CAS  PubMed  Google Scholar 

  25. Lonappan L, Pulicharla R, Rouissi T, Brar SK, Verma M, Surampalli RY, et al. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption—atmospheric pressure chemical ionization—tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization–tandem mass spectrometry method. J Chromatogr A. 2016;1433:106–13. https://doi.org/10.1016/J.CHROMA.2016.01.030

  26. Mohapatra DP, Brar SK, Tyagi RD, Picard P, Surampalli RY. Carbamazepine in municipal wastewater and wastewater sludge: ultrafast quantification by laser diode thermal desorption-atmospheric pressure chemical ionization coupled with tandem mass spectrometry. Talanta. 2012;99:247–55. https://doi.org/10.1016/J.TALANTA.2012.05.047.

    Article  CAS  PubMed  Google Scholar 

  27. Swales JG, Gallagher R, Peter RM. Determination of metformin in mouse, rat, dog and human plasma samples by laser diode thermal desorption/atmospheric pressure chemical ionization tandem mass spectrometry. J Pharm Biomed Anal. 2010;53:740–4. https://doi.org/10.1016/J.JPBA.2010.04.033.

    Article  CAS  PubMed  Google Scholar 

  28. Heudi O, Barteau S, Picard P, Tremblay P, Picard F, Kretz O. Laser diode thermal desorption–positive mode atmospheric pressure chemical ionization tandem mass spectrometry for the ultra-fast quantification of a pharmaceutical compound in human plasma. J Pharm Biomed Anal. 2011;54:1088–95. https://doi.org/10.1016/J.JPBA.2010.11.025.

    Article  CAS  PubMed  Google Scholar 

  29. Borik A, Vojs Stanova A, Kodesova R, Brooks BW, Grabicova K, Novakova P, et al. Ultrafast laser diode thermal desorption method for analysis of representative pharmaceuticals in soil leachate samples. Talanta. 2020;208:120382. https://doi.org/10.1016/j.talanta.2019.120382.

    Article  CAS  PubMed  Google Scholar 

  30. Grabicova K, Staňová AV, Koba O, Borik A, Randak T, Grabic R. Development of a robust extraction procedure for the HPLC-ESI-HRPS determination of multi-residual pharmaceuticals in biota samples. Anal Chim Acta. 2018. https://doi.org/10.1016/j.aca.2018.04.011.

  31. Solliec M, Massé D, Sauvé S. Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry. Talanta. 2014;128:23–30. https://doi.org/10.1016/J.TALANTA.2014.04.023.

    Article  CAS  PubMed  Google Scholar 

  32. Kruve A, Rebane R, Kipper K, Oldekop M-L, Evard H, Herodes K, et al. Tutorial review on validation of liquid chromatography–mass spectrometry methods: part II. Anal Chim Acta. 2015;870:8–28. https://doi.org/10.1016/J.ACA.2015.02.016.

    Article  CAS  PubMed  Google Scholar 

  33. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75:3019–30. https://doi.org/10.1021/ac020361s.

    Article  CAS  PubMed  Google Scholar 

  34. Passing H, Bablok W. Application of statistical procedures in analytical instrument testing. J Automat Chem. 1985;7:74–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England). 1986;1:307–10.

    Article  CAS  Google Scholar 

  36. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. 2012;11:1475–88. https://doi.org/10.1074/mcp.O112.020131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giavarina D. Understanding Bland Altman analysis. Biochem Medica. 2015;25:141–51. https://doi.org/10.11613/BM.2015.015.

    Article  Google Scholar 

  38. Lidija B-Z. Comparison of methods: Passing and Bablok regression. Biochem Medica. 2011;21:49–52.

    Google Scholar 

  39. Roy-Lachapelle A, Solliec M, Sinotte M, Deblois C, Sauvé S. High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD–APCI coupled to a Q-Exactive mass spectrometer. Talanta. 2015;132:836–44. https://doi.org/10.1016/J.TALANTA.2014.10.021.

    Article  CAS  PubMed  Google Scholar 

  40. Allen KR. Interference by venlafaxine ingestion in the detection of tramadol by liquid chromatography linked to tandem mass spectrometry for the screening of illicit drugs in human urine. Clin Toxicol. 2006;44:147–53. https://doi.org/10.1080/15563650500514434.

    Article  CAS  Google Scholar 

  41. Viant MR, Davis JE, Duffy C, Engel J, Stenton C, Sebire M, et al. Application of passive sampling to characterise the fish exometabolome. Metabolites. 2017;7. https://doi.org/10.3390/metabo7010008.

  42. Young T, Walker SP, Alfaro AC, Fletcher LM, Murray JS, Lulijwa R, et al. Impact of acute handling stress, anaesthesia, and euthanasia on fish plasma biochemistry: implications for veterinary screening and metabolomic sampling. Fish Physiol Biochem. 2019;45:1485–94. https://doi.org/10.1007/s10695-019-00669-8.

    Article  CAS  PubMed  Google Scholar 

  43. Sogin EM, Puskás E, Dubilier N, Liebeke M. Marine metabolomics: a method for nontargeted measurement of metabolites in seawater by gas chromatography–mass spectrometry. mSystems. 2019:4. https://doi.org/10.1128/msystems.00638-19.

  44. Clendinen CS, Monge ME, Fernández FM. Ambient mass spectrometry in metabolomics. Analyst. 2017;142:3101–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic projects “CENAKVA” (LM2018099) and “CENAKVA Center Development (No. CZ.1.05/2.1.00/19.0380)” and by the Czech Science Foundation (No. 18-15802S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Borik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

This experiment was performed in accordance with the EU-harmonized Animal Welfare Act of the Czech Republic. The research facility is authorized under (No. 53100/2013-MZE-17214) the framework of the law against Animal Cruelty of the Czech Republic (No. 246/1992), with the ethical approval committee number MSMT-6744/2018-4.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borik, A., Staňová, A.V., Brooks, B.W. et al. Determination of citalopram in fish brain tissue: benefits of coupling laser diode thermal desorption with low- and high-resolution mass spectrometry. Anal Bioanal Chem 412, 4353–4361 (2020). https://doi.org/10.1007/s00216-020-02672-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02672-y

Keywords

Navigation