Log in

Chemiluminescence of nitrogen-rich quantum dots in diperiodatoargentate(III) solution and its application in ferulic acid analysis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel chemiluminescence (CL) system based on the reaction of fluorescent water-soluble nitrogen-rich quantum dots (N-dots) and diperiodatoargentate(III) (DPA) was developed. The prepared N-dots have a small size (≤10 nm) and high percentage of nitrogen (39.9 %), which exceeds the content of carbon in the same N-dots. The N-dots exhibit characteristic blue fluorescence under UV light and up-conversion luminescence. The relatively intense CL emission is based on the direct oxidation of N-dots by DPA. The CL emission may be attributed to the high nitrogen content and the special structure of the N-dots. The CL mechanism of N-dots and DPA was investigated by using CL, UV–Vis absorption, IR, fluorescence, and radical scavenging experiments. This investigation provides a way to study the optical properties of N-dots. The analytical applicability of the N-dots and DPA CL system in the determination of ferulic acid (FA) was explored. The CL intensity was linearly proportional to the concentration of ferulic acid from 3.0 × 10−7 to 1.0 × 10−5 g mL−1 with a detection limit of 8.0 × 10−8 g mL−1 (3σ); the relative standard deviation was 2.4 % for 4.0 × 10−7 g mL−1 FA (n = 9). The proposed method was successfully applied to the determination of ferulic acid in Angelica sinensis. The study provides valuable insight into the role of nitrogen-rich quantum dots in CL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin Z, Chen H, Lin J. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry. Analyst. 2013;138(18):5182–93.

    Article  CAS  Google Scholar 

  2. Iranifam M. Revisiting flow-chemiluminescence techniques: pharmaceutical analysis. Luminescence. 2013;28(6):798–820.

    Article  CAS  Google Scholar 

  3. Christodouleas D, Fotakis C, Economou A, Papadopoulos K, Timotheou-Potamia M, Calokerinos A. Flow-based methods with chemiluminescence detection for food and environmental analysis: a review. Anal Lett. 2011;44(1-3):176–215.

    Article  CAS  Google Scholar 

  4. Ocaña-González JA, Ramos-Payán M, Fernández-Torres R, Villar Navarro M, Bello-López MÁ. Application of chemiluminescence in the analysis of wastewaters – a review. Talanta. 2014;122:214–22.

    Article  Google Scholar 

  5. Su Y, **e Y, Hou X, Lv Y. Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence. Appl Spectrosc Rev. 2014;49(3):201–32.

    Article  CAS  Google Scholar 

  6. Sanderson K. Quantum dots go large. Nature. 2009;459(7248):760–1.

    Article  Google Scholar 

  7. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    Article  CAS  Google Scholar 

  8. Chen H, Lin L, Li H, Lin J. Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev. 2014;263:86–100.

    Article  Google Scholar 

  9. Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed. 2006;45:5140–3.

    Article  CAS  Google Scholar 

  10. Dong S, Liu F, Lu C. Organo-modified hydrotalcite-quantum dot nanocomposites as a novel chemiluminescence resonance energy transfer probe. Anal Chem. 2013;85(6):3363–8.

    Article  CAS  Google Scholar 

  11. Zhou W, Cao Y, Sui D, Lu C. Radical pair-driven luminescence of quantum dots for specific detection of peroxynitrite in living cells. Anal Chem. 2016;88(5):2659–65.

    Article  CAS  Google Scholar 

  12. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4(1):11–8.

    Article  CAS  Google Scholar 

  13. Bhunia SK, Pradhan N, Jana NR. Vitamin B1 derived blue and green fluorescent carbon nanoparticles for cell-imaging application. ACS Appl Mater Interfaces. 2014;6(10):7672–9.

    Article  CAS  Google Scholar 

  14. Zheng X, Ananthanarayanan A, Luo K, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–36.

    Article  CAS  Google Scholar 

  15. Li H, Kang Z, Liu Y, Lee S. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22(46):24230–53.

    Article  CAS  Google Scholar 

  16. Yao Q, Lin L, Zhao T, Chen X. Advances in preparation, physicochemical properties and applications of heteroatom-doped graphene quantum dots. Prog Chem. 2015;27(11):1523–30.

    Google Scholar 

  17. Zhang Y, Ma D, Zhuang Y, Zhang X, Chen W, Hong L, et al. One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J Mater Chem. 2012;22(33):16714–8.

    Article  CAS  Google Scholar 

  18. Zhu S, Meng Q, Wang L, Zhang J, Song Y, ** H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 2013;52(14):3953–7.

    Article  CAS  Google Scholar 

  19. Hu S, Tian R, Dong Y, Yang J, Liu J, Chang Q. Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale. 2013;5(23):11665–71.

    Article  CAS  Google Scholar 

  20. Ke Y, Garg B, Ling Y. Waste chicken eggshell as low-cost precursor for efficient synthesis of nitrogen-doped fluorescent carbon nanodots and their multi-functional applications. RSC Adv. 2014;4(102):58329–36.

    Article  CAS  Google Scholar 

  21. Xu H, Zhou S, **ao L, Wang H, Li S, Yuan Q. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J Mater Chem C. 2015;3(2):291–7.

    Article  CAS  Google Scholar 

  22. Liang Q, Ma W, Shi Y, Li Z, Yang X. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon. 2013;60:421–8.

    Article  CAS  Google Scholar 

  23. Xu Y, Wu M, Liu Y, Feng X, Yin X, He X, et al. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Eur J. 2013;19(7):2276–83.

    Article  CAS  Google Scholar 

  24. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, et al. One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B. 2013;1(1):39–42.

    Article  CAS  Google Scholar 

  25. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–4.

    Article  CAS  Google Scholar 

  26. Amjadi M, Manzoori JL, Hallaj T. Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J Lumin. 2014;153:73–8.

    Article  CAS  Google Scholar 

  27. Hallaj T, Amjadi M, Manzoori JL, Shokri R. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine. Microchim Acta. 2015;182(3-4):789–96.

    Article  CAS  Google Scholar 

  28. Teng P, **e J, Long Y, Huang X, Zhu R, Wang X, et al. Chemiluminescence behavior of the carbon dots and the reduced state carbon dots. J Lumin. 2014;146:464–9.

    Article  CAS  Google Scholar 

  29. Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH. Direct chemiluminescence of carbon dots induced by potassium ferricyanide and its analytical application. Spectrochim Acta A Mol Biomol Spectrosc. 2014;122:715–20.

    Article  CAS  Google Scholar 

  30. Shi H, Guo Y, Kang W. Kinetic study of the oxidation of N, N-dimethylethanolamine by bis(hydrogenperiodato)argentate(III) in aqueous solution. J Solution Chem. 2011;40(7):1371–81.

    Article  CAS  Google Scholar 

  31. Fu Z, Li G, Hu Y. A novel flow injection chemiluminescence method for the determination of indole-3-acetic acid in biological samples by using trivalent silver. Anal Methods. 2015;7(11):4590–5.

    Article  CAS  Google Scholar 

  32. Sun H, Chen P, Wang F, Wen H. Investigation on enhanced chemiluminescence reaction systems with bis(hydrogenperiodato)argentate(III) complex anion for fluoroquinolones synthetic antibiotics. Talanta. 2009;79(2):134–40.

    Article  CAS  Google Scholar 

  33. Chen X, ** Q, Wu L, Tung C, Tang X. Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew Chem Int Ed. 2014;46(53):12542–7.

    Google Scholar 

  34. Balikungeri A, Pelletier M, Monnier D. Contribution to the study of the complexes bis(dihydrogen tellurato)cuprate(III) and argentate(III), bis(hydrogen periodato)cuprate(III) and argentate(III). Inorg Chim Acta. 1977;22:7–14.

    Article  CAS  Google Scholar 

  35. Da Silva JCGE, Gonçalves HMR. Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem. 2011;30(8):1327–36.

    Article  Google Scholar 

  36. Chen W, Joly AG, McCready DE. Upconversion luminescence from CdSe nanoparticles. J Chem Phys. 2005;122(22):224708.

    Article  Google Scholar 

  37. Zhao L, Di F, Wang D, Guo L, Yang Y, Wan B, et al. Chemiluminescence of carbon dots under strong alkaline solutions: a novel insight into carbon dot optical properties. Nanoscale. 2013;5(7):2655–8.

    Article  CAS  Google Scholar 

  38. Shi H, Shen S, Sun H, Liu Z, Li L. Oxidation of l-serine and l-threonine by bis(hydrogen periodato)argentate(III) complex anion: a mechanistic study. J Inorg Biochem. 2007;101(1):165–72.

    Article  CAS  Google Scholar 

  39. Peng C, Hsieh C, Wang H, Chung J, Chen K, Peng RY. Ferulic acid is nephrodamaging while gallic acid is renal protective in long term treatment of chronic kidney disease. Clin Nutr. 2012;31(3):405–14.

    Article  CAS  Google Scholar 

  40. Luo L, Wang X, Li Q, Ding Y, Jia J, Deng D. Voltammetric determination of ferulic acid didodecyldimethylammonium bromide/nafion composite film-modified carbon paste electrode. Anal Sci. 2010;26(8):907–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work were supported by the National Natural Science Foundation of China (nos. 21475153 and 21575167), the Guangdong Provincial Natural Science Foundation of China (No. 2015A030311020), and the Special funds for public welfare research and capacity building in Guangdong Province of China (no. 2015A030401036), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongke Li or Yufei Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Highlights of Analytical Chemical Luminescence with guest editors Aldo Roda, Hua Cui, and Chao Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Li, G. & Hu, Y. Chemiluminescence of nitrogen-rich quantum dots in diperiodatoargentate(III) solution and its application in ferulic acid analysis. Anal Bioanal Chem 408, 8813–8820 (2016). https://doi.org/10.1007/s00216-016-9786-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9786-3

Keywords

Navigation