Log in

Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The existence of pharmaceuticals and illicit drugs (PIDs) in environmental waters has led many analytical chemists to develop screening methods for monitoring purposes. Water samples can contain a huge number of possible contaminants, commonly at low concentrations, which makes their detection and identification problematic. Liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) has proven itself effective in the screening of environmental contaminants. The present work investigates the use of the most popular HRMS instruments, quadrupole time-of-flight and linear trap quadrupole-Orbitrap, from two different laboratories. A suspect screening for PIDs was carried out on wastewater (influent and effluent) and surface water samples from Castellón, Eastern Spain, and Cremona, Northern Italy, incorporating a database of 107 PIDs (including 220 fragment ions). A comparison between the findings of both instruments and of the samples was made which highlights the advantages and drawbacks of the strategies applied in each case. In total, 28 compounds were detected and/or identified by either/both instruments with irbesartan, valsartan, benzoylecgonine and caffeine being the most commonly found compounds across all samples.

A suspect screening of pharmaceuticals and illicit drugs in envrionmental waters of both Castellón, Spain and Cremona, Italy was carried out using liquid chromatography coupled with high resolution mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Richardson SD (2012) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 84:747–778. doi:10.1021/ac202903d

    Article  CAS  Google Scholar 

  2. Li WC (2014) Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut 187:193–201. doi:10.1016/j.envpol.2014.01.015

    Article  CAS  Google Scholar 

  3. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434. doi:10.1016/j.chemosphere.2008.11.086

    Article  Google Scholar 

  4. Brozinski J, Lahti M, Meierjohann A, Oikari A, Kronberg L (2013) The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant. Environ Sci Technol 47:342–348. doi:10.1021/es303013j

  5. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. doi:10.1016/j.scitotenv.2013.12.065

    Article  Google Scholar 

  6. Pal R, Megharaj M, Kirkbride KP, Naidu R (2013) Illicit drugs and the environment—a review. Sci Total Environ 463–464:1079–1092. doi:10.1016/j.scitotenv.2012.05.086

    Article  Google Scholar 

  7. Anumol T, Snyder SA (2015) Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Talanta 132:77–86. doi:10.1016/j.talanta.2014.08.011

    Article  CAS  Google Scholar 

  8. Backe WJ, Field JA (2012) Is SPE necessary for environmental analysis? A quantitative comparison of matrix effects from large-volume injection and solid-phase extraction based methods. Environ Sci Technol 46:6750–6758. doi:10.1021/es300235z

    Article  CAS  Google Scholar 

  9. Krauss M, Singer H, Hollender J (2010) LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397:943–951. doi:10.1007/s00216-010-3608-9

    Article  CAS  Google Scholar 

  10. Hernández F, Ibáñez M, Bade R, Bijlsma L, Sancho JV (2014) Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry. TrAC Trends Anal Chem 63:140–157. doi:10.1016/j.trac.2014.08.003

    Article  Google Scholar 

  11. Hernández F, Sancho JV, Ibáñez M, Abad E, Portolés T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–1264. doi:10.1007/s00216-012-5844-7

    Article  Google Scholar 

  12. Hernández F, Bijlsma L, Sancho JV, Díaz R, Ibáñez M (2011) Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultrahigh pressure liquid chromatography-quadrupole-time-of-flight-mass spectrometry. Anal Chim Acta 684:87–97. doi:10.1016/j.aca.2010.10.043

    Article  Google Scholar 

  13. de Voogt P, Emke E, Helmus R, Panteliadis P, van Leerdam JA (2011) Determination of illicit drugs in the water cycle by LC-Orbtitrap MS. In: Castiglioni S, Zuccato E, Fanelli R (eds.) Illicit drugs environ. Occur. Anal. Fate Using Mass Spectrom., John Wiley & Sons, Ltd., pp. 87–114

  14. Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass. J Chromatogr A 1217:7038–7054. doi:10.1016/j.chroma.2010.08.070

    Article  Google Scholar 

  15. Gonzalez-Mariño I, Quintana JB, Rodriguez I, Gonzalez-Diez M, Cela R (2012) Screening and selective quantification of illicit drugs in wastewater by mixed-mode solid-phase extraction and quadrupole-time-of-flight liquid chromatography–mass spectrometry. Anal Chem 84:1708–1717. doi:10.1021/ac202989e

    Article  Google Scholar 

  16. Ibáñez M, Guerrero C, Sancho JV, Hernández F (2009) Screening of antibiotics in surface and wastewater samples by ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. J Chromatogr A 1216:2529–2539. doi:10.1016/j.chroma.2009.01.073

    Article  Google Scholar 

  17. Pinhancos R, Maass S, Ramanathan DM (2011) High-resolution mass spectrometry method for the detection, characterization and quantitation of pharmaceuticals in water. J Mass Spectrom 46:1175–1181. doi:10.1002/jms.2005

    Article  CAS  Google Scholar 

  18. Wille K, Claessens M, Rappé K, Monteyne E, Janssen CR, De Brabander HF et al (2011) Rapid quantification of pharmaceuticals and pesticides in passive samplers using ultra high performance liquid chromatography coupled to high resolution mass spectrometry. J Chromatogr A 1218:9162–9173. doi:10.1016/j.chroma.2011.10.039

    Article  CAS  Google Scholar 

  19. Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466–467:421–438. doi:10.1016/j.scitotenv.2013.07.044

    Article  Google Scholar 

  20. SEWPROF ITN: a new paradigm in drug use and human health risk assessment: sewage profiling at the community level, (n.d.). http://sewprof-itn.eu/. Accessed 1 June 2015

  21. Bijlsma L, Beltrán E, Boix C, Sancho JV, Hernández F (2014) Improvements in analytical methodology for the determination of frequently consumed illicit drugs in urban wastewater. Anal Bioanal Chem 406:4261–4272. doi:10.1007/s00216-014-7818-4

    Article  CAS  Google Scholar 

  22. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP et al (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098. doi:10.1021/es5002105

    Article  CAS  Google Scholar 

  23. Díaz R, Ibáñez M, Sancho JV, Hernández F (2011) Building an empirical mass spectra library for screening of organic pollutants by ultra-high-pressure liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:355–369. doi:10.1002/rcm.4860

    Article  Google Scholar 

  24. Diaz R, Ibáñez M, Sancho JV, Hernández F (2013) Qualitative validation of a liquid chromatography-quadrupole-time of flight mass spectrometry screening method for organic pollutants in waters. J Chromatogr A 1276:47–57. doi:10.1016/j.chroma.2012.12.030

    Article  CAS  Google Scholar 

  25. Hernández F, Ibáñez M, Portolés T, Cervera MI, Sancho JV, López FJ (2015) Advancing towards universal screening for organic pollutants in waters. J Hazard Mater 282:86–95. doi:10.1016/j.jhazmat.2014.08.006

    Article  Google Scholar 

  26. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. doi:10.1002/jms.1777

    Article  CAS  Google Scholar 

  27. Gracia-Lor E, Sancho JV, Hernandez F (2010) Simultaneous determination of acidic, neutral and basic pharmaceuticals in urban wastewater by ultra high-pressure liquid chromatography-tandem mass spectrometry. J Chromatogr A 1217:622–632. doi:10.1016/j.chroma.2009.11.090

    Article  CAS  Google Scholar 

  28. Gracia-Lor E, Sancho JV, Hernandez F (2011) Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1218:2264–2275. doi:10.1016/j.chroma.2011.02.026

    Article  CAS  Google Scholar 

  29. Zuccato E, Castiglioni S, Bagnati R, Melis M, Fanelli R (2010) Source, occurrence and fate of antibiotics in the Italian aquatic environment. J Hazard Mater 179:1042–1048. doi:10.1016/j.jhazmat.2010.03.110

    Article  CAS  Google Scholar 

  30. Zuccato E, Castiglioni S, Fanelli R, Reitano G, Bagnati R, Chiabrando C et al (2006) Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ Sci Pollut Res Int 13:15–21. doi:10.1065/espr2006.01.004

    Article  CAS  Google Scholar 

  31. Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelò D (2012) Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25. doi:10.1016/j.scitotenv.2012.08.061

    Article  CAS  Google Scholar 

  32. Gómez MJ, Sirtori C, Mezcua M, Fernández-Alba AR, Agüera A (2008) Photodegradation study of three dipyrone metabolites in various water systems: identification and toxicity of their photodegradation products. Water Res 42:2698–2706. doi:10.1016/j.watres.2008.01.022

    Article  Google Scholar 

  33. Metamizolo: una lunga storia tra luci ed ombre. Accessed November 2014 http://www.farmacovigilanza.org/focus/200608/

  34. N. 2/2006 Prescription data: IT del Sistema Nacional de Salud Volumen 30, Subgrupos ATC y Principios activos de mayor consumo en el Sistema Nacional de Salud en 2005, (2006) 42–49

  35. A.I. del Farmaco, L’uso dei Farmaci in Italia (2013) http://www.agenziafarmaco.gov.it/sites/default/files/Rapporto_OsMED_2013.pdf

  36. Gracia-Lor E, Sancho JV, Serrano R, Hernandez F (2012) Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia. Chemosphere 87:453–462. doi:10.1016/j.chemosphere.2011.12.025

    Article  CAS  Google Scholar 

  37. Ferrer I, Thurman EM (2012) Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1259:148–157. doi:10.1016/j.chroma.2012.03.059

    Article  CAS  Google Scholar 

  38. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161:132–145. doi:10.1016/j.chroma.2007.05.074

    Article  CAS  Google Scholar 

  39. Guidance document on analytical quality control and validation procedures for pesticides residues in food and feed, SANCO /12571/2013 (2013) http://ec.europa.eu/food/plant/pesticides/guidance_documents/docs/qualcontrol_en.pdf

Download references

Acknowledgments

R. Bade, N. I. Rousis and E. Gracia-Lor acknowledge the European Union’s International Training Network SEWPROF (Marie Curie-FP7-PEOPLE Grant no. 317205) for their Early Stage Researcher (R. Bade and N. I. Rousis) and Experienced Researcher (E. Gracia-Lor) contracts. The financial support from the Spanish Ministry of Economy and Competitiveness (Ref CTQ2012-36189) and Generalitat Valenciana, Spain (research group of excellence PROMETEO II/2014/023; ISIC 2012/016) is also acknowledged.

We would like to thank Thermo Scientific who provided the software TraceFinder and particularly Claudia Martins for technical support.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Hernandez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bade, R., Rousis, N.I., Bijlsma, L. et al. Screening of pharmaceuticals and illicit drugs in wastewater and surface waters of Spain and Italy by high resolution mass spectrometry using UHPLC-QTOF MS and LC-LTQ-Orbitrap MS. Anal Bioanal Chem 407, 8979–8988 (2015). https://doi.org/10.1007/s00216-015-9063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9063-x

Keywords

Navigation