Log in

Hot embossing of electrophoresis microchannels in PMMA substrates using electric heating wires

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple method based on electric heating wires has been developed for the rapid fabrication of poly(methyl methacrylate) (PMMA) electrophoresis microchips in ordinary laboratories without the need for microfabrication facilities. A piece of stretched electric heating wire placed across the length of a PMMA plate along its midline was sandwiched between two microscope slides under pressure. Subsequently, alternating current was allowed to pass through the wire to generate heat to emboss a separation microchannel on the PMMA separation channel plate at room temperature. The injection channel was fabricated using the same procedure on a PMMA sheet that was perpendicular to the separation channel. The complete microchip was obtained by bonding the separation channel plate to the injection channel sheet, sealing the channels inside. The electric heating wires used in this work not only generated heat; they also served as templates for embossing the microchannels. The prepared microfluidic microchips have been successfully employed in the electrophoresis separation and detection of ions in connection with contactless conductivity detection.

SEM image illustrating the cross sections of an open microchannel in a PMMA channel plate. Also shown, in the inset, is a 3D image of the open channel

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b
Fig. 3A–B
Fig. 4

Similar content being viewed by others

References

  1. Harrison DJ, Manz A, Fan Z, Ludi H, Widmer HM (1992) Anal Chem 64:1926–1932

    Article  CAS  Google Scholar 

  2. Harrison DJ, Flury K, Seiler K, Fan Z, Effenhauser CS, Manz A (1993) Science 261:895–897

    Article  CAS  Google Scholar 

  3. Pumera M, Merkoc A, Alegret S (2007) Electrophoresis 28:1274–1280

    Article  CAS  Google Scholar 

  4. Crevillen AG, Pumera M, Gonzalez MC, Escarpa A (2009) Analyst 134:657–662

    Article  CAS  Google Scholar 

  5. Crevillén AG, Ávila M, Pumera M, González MC, Escarpa A (2007) Anal Chem 79:7408–7415

    Article  Google Scholar 

  6. Becker H, Gartner C (2000) Electrophoresis 20:12–26

    Article  Google Scholar 

  7. Chen Y, Zhang LY, Chen G (2008) Electrophoresis 29:1801–1814

    Article  CAS  Google Scholar 

  8. Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Anal Chem 72:643A–651A

    Article  CAS  Google Scholar 

  9. Qi SZ, Liu XZ, Ford S, Barrows J, Thomas G, Kelly K, McCandless A, Lian K, Goettert J, Soper SA (2002) Lab Chip 2:88–95

    Google Scholar 

  10. Xu JD, Locascio L, Gaitan M, Lee CS (2000) Anal Chem 72:1930–1933

    Article  CAS  Google Scholar 

  11. Sun XH, Peeni BA, Yang WC, Becerril HA, Woolley AT (2007) J Chromatogr A 1162:162–166

    Article  CAS  Google Scholar 

  12. McCormick RM, Nelson RJ, AlonsoAmigo MG, Benvegnu J, Hooper HH (1997) Anal Chem 69:2626–2630

    Article  CAS  Google Scholar 

  13. Piotter V, Hanemann T, Ruprecht R, Hausselt J (1997) Microsys Tech 3:129–138

    Article  Google Scholar 

  14. Chenga JY, Wei CW, Hsua KH, Young TH (2004) Sen Actuat B 99:186–196

    Article  Google Scholar 

  15. Yuan DJ, Das S (2007) J Appl Phy 101:24901

    Article  Google Scholar 

  16. Brister PC, Weston KD (2005) Anal Chem 77:7478–7482

    Article  CAS  Google Scholar 

  17. Muck A, Wang J, Jacobs M, Chen G, Chatrathi MP, Jurka V, Vyborny Z, Spillman SD, Sridharan G, Schoning MJ (2004) Anal Chem 76:2290–2297

    Article  CAS  Google Scholar 

  18. Xu GX, Wang J, Chen Y, Zhang LY, Wang DR, Chen G (2006) Lab Chip 6:145–148

    Article  CAS  Google Scholar 

  19. Chen ZF, Gao YH, Su RG, Li CW, Lin JM (2003) Electrophoresis 24:3246–3252

    Article  CAS  Google Scholar 

  20. Chen YH, Chen SH (2001) Electrophoresis 21:165–170

    Article  Google Scholar 

  21. Martynova L, Locascio LE, Gaitan M, Kramer G, Christensen RG, MacCrehan WA (1997) Anal Chem 69:4783–4789

    Article  CAS  Google Scholar 

  22. Chen Y, Duan HT, Zhang LY, Chen G (2008) Electrophoresis 29:4922–4927

    Article  CAS  Google Scholar 

  23. Huang X, Gordon M, Zare RN (1988) Anal Chem 60:1837–1838

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NSFC (20875015, 20675017, and 20405002), the 863 Program of China (2007AA04Z309), the Shanghai Science Committee (2009JC1401400), the National Key Technology R&D Program (2006BAI19B02), and the Education Ministry of China (NCET-08-0134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Z., Yu, Z., Chen, Z. et al. Hot embossing of electrophoresis microchannels in PMMA substrates using electric heating wires. Anal Bioanal Chem 396, 2715–2720 (2010). https://doi.org/10.1007/s00216-010-3490-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3490-5

Keywords

Navigation