Log in

Lewis acid-catalyzed Diels–Alder cycloaddition of 2,5-dimethylfuran and ethylene: a density functional theory investigation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory calculations with the M06-2X exchange–correlation functional have been performed to explore the Diels–Alder reaction between 2,5-DMF and ethylene as well as to compare the uncatalyzed reaction to the one catalyzed by the AlCl3 Lewis acid. The uncatalyzed reaction corresponds to a normal electron-demand (NED) mechanism where ethylene is an electron acceptor and 2,5-DMF plays the role of electron donor. This reaction presents a low polar character, its kinetics is little impacted by the solvent dielectric constant, and the formation of the two new σ bonds occurs through a one-step synchronous process. When the LA interacts with ethylene, forming a π-complex, it enhances its acceptor character, further favoring the NED mechanism, which is accompanied by a reduction of the free energy of the transition state. On the other hand, when AlCl3 is complexed by 2,5-DMF, the inverse electron-demand (IED) mechanism is favored, with ethylene playing the role of the donor. Within both NED and IED mechanism, the LA-catalyzed reaction takes place via a one-step asynchronous process. In addition, it is highly polar, so that the activation barrier decreases with the solvent polarity. Moreover, the calculations have evidenced that the LA forms stable complexes with any of the reactants so that the gain on the activation barrier amounts to 9–12 kcal mol−1 for the NED mechanism and to 3–9 kcal mol−1 for the IED one and that the formation of Al2Cl6 dimers impacts the different equilibria. Finally, the decrease of the activation barrier goes in pair with the reduction of the HOMO–LUMO gap, with the greatest decrease recorded when the LA interacts with ethylene according to the NED mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Fig. 9

Similar content being viewed by others

References

  1. Briefing US (2013) International Energy Outlook. US Energy Information Administration

  2. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  3. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  4. Mettler MS, Vlachos DG, Dauenhauer PJ (2012) Energy Environ Sci 5:7797–7809

    Article  CAS  Google Scholar 

  5. Schmidt LD, Dauenhauer PJ (2007) Nature 447:914–915

    Article  CAS  PubMed  Google Scholar 

  6. Tong X, Ma Y, Li Y (2010) Appl Catal A 385:1–13

    Article  CAS  Google Scholar 

  7. West RM, Kunkes EL, Simonetti DA, Dumesic JA (2009) Catal Today 147:115–125

    Article  CAS  Google Scholar 

  8. Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) ACS Catal 1:408–410

    Article  CAS  Google Scholar 

  9. **a H, Xu S, Hu H, An J, Li C (2018) RSC Adv 8:30875–30886

    Article  CAS  Google Scholar 

  10. Hu L, Tang X, Xu J, Wu Z, Lin L, Liu S (2014) Ind Eng Chem Res 53:3056–3064

    Article  CAS  Google Scholar 

  11. Kumalaputri AJ, Bottari G, Erne PM, Heeres HJ, Barta K (2014) Chemsuschem 7:2266–2275

    Article  CAS  PubMed  Google Scholar 

  12. Iriondo A, Mendiguren A, Güemez MB, Requies J, Cambra JF (2017) Catal Today 279:286–295

    Article  CAS  Google Scholar 

  13. Casanova O, Iborra S, Corma A (2009) Chemsuschem 2:1138–1144

    Article  CAS  PubMed  Google Scholar 

  14. Pacheco JJ, Labinger JA, Sessions AL, Davis ME (2015) ACS Catal 5:5904–5913

    Article  CAS  Google Scholar 

  15. Pacheco JJ, Davis ME (2014) Proc Natl Acad Sci USA 111:8363–8367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T (2016) Green Chem 18:342–359

    Article  CAS  Google Scholar 

  17. Nikbin N, Do PT, Caratzoulas S, Lobo RF, Dauenhauer PJ, Vlachos DG (2013) J Catal 297:35–43

    Article  CAS  Google Scholar 

  18. Nikbin N, Feng S, Caratzoulas S, Vlachos DG (2014) J Phys Chem C 118:24415–24424

    Article  CAS  Google Scholar 

  19. Rohling RY, Tranca IC, Hensen EJ, Pidko EA (2018) J Phys Chem C 122:14733–14743

    Article  CAS  Google Scholar 

  20. Rohling RY, Tranca IC, Hensen EJ, Pidko EA (2018) ACS Catal 9:376–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patet RE, Nikbin N, Williams CL, Green SK, Chang CC, Fan W, Vlachos DG (2015) ACS Catal 5:2367–2375

    Article  CAS  Google Scholar 

  22. Patet RE, Fan W, Vlachos DG, Caratzoulas S (2017) ChemCatChem 9:2523–2535

    Article  CAS  Google Scholar 

  23. Li YP, Head-Gordon M, Bell AT (2014) J Phys Chem C 118:22090–22095

    Article  CAS  Google Scholar 

  24. Chang CC, Cho HJ, Yu J, Gorte RJ, Gulbinski J, Dauenhauer P, Fan W (2016) Green Chem 18:1368–1376

    Article  CAS  Google Scholar 

  25. Kim TW, Kim SY, Kim JC, Kim Y, Ryoo R, Kim CU (2016) Appl Catal B 185:100–109

    Article  CAS  Google Scholar 

  26. Williams CL, Chang CC, Do P, Nikbin N, Caratzoulas S, Vlachos DG, Dauenhauer PJ (2012) ACS Catal 2:935–939

    Article  CAS  Google Scholar 

  27. Song S, Wu G, Dai W, Guan N, Li L (2016) J Mol Catal A Chem 420:134–141

    Article  CAS  Google Scholar 

  28. Feng X, Shen C, Tian C, Tan T (2017) Ind Eng Chem Res 56:5852–5859

    Article  CAS  Google Scholar 

  29. Diels O, Alder K (1928) Justus Liebigs Ann Chem 460:98–122

    Article  CAS  Google Scholar 

  30. Diels O, Alder K (1929) Ber Dtsch Chem Ges 62:554–562

    Article  Google Scholar 

  31. Diels O, Alder K (1929) Ber Dtsch Chem Ges 62:2087–2090

    Article  Google Scholar 

  32. Fukui K (1982) Science 218:747–754

    Article  CAS  PubMed  Google Scholar 

  33. Adjieufack AI, Liégeois V, Mbouombouo Ndassa I, Ketcha Mbadcam J, Champagne B (2018) J Phys Chem A 122:7472–7481

    Article  CAS  PubMed  Google Scholar 

  34. Domingo LR, Aurell MJ, Perez P, Saez JA (2012) RSC Adv 2:1334–1342

    Article  CAS  Google Scholar 

  35. Çelebi-Ölçüm N, Ess DH, Aviyente V, Houk KN (2008) J Org Chem 73:7472–7480

    Article  CAS  PubMed  Google Scholar 

  36. Pi Z, Li S (2006) J Phys Chem A 110:9225–9230

    Article  CAS  PubMed  Google Scholar 

  37. Domingo LR, Asensio A, Arroyo P (2002) J Phys Org Chem 15:660–666

    Article  CAS  Google Scholar 

  38. Yamabe S, Minato T (2000) J Org Chem 65(6):1830–1841

    Article  CAS  PubMed  Google Scholar 

  39. García JI, Martinez-Merino V, Mayoral JA, Salvatella L (1998) J Am Chem Soc 120(10):2415–2420

    Article  Google Scholar 

  40. Suárez D, Sordo TL, Sordo JA (1994) J Am Chem Soc 116:763–764

    Article  Google Scholar 

  41. Gonzalez J, Houk KN (1992) J Org Chem 57:3031–3037

    Article  CAS  Google Scholar 

  42. Guner OF, Ottenbrite RM, Shillady DD, Alston PV (1987) J Org Chem 52:391–394

    Article  CAS  Google Scholar 

  43. Hamlin TA, Bickelhaupt FM, Fernández I (2021) Acc Chem Res 54:1972–1981

    Article  CAS  PubMed  Google Scholar 

  44. Salavati-fard T, Caratzoulas S, Doren DJ (2015) J Phys Chem A 119:9834–9843

    Article  CAS  PubMed  Google Scholar 

  45. Domingo LR, Sáez JA (2009) Org Biomol Chem 7:3576–3583

    Article  CAS  PubMed  Google Scholar 

  46. Domingo LR (2014) RSC Adv 4:32415–32428

    Article  CAS  Google Scholar 

  47. Domingo LR, Ríos-Gutiérrez M, Pérez P (2020) Molecules 25:2535–2560

    Article  CAS  PubMed Central  Google Scholar 

  48. Yates P, Eaton P (1960) J Am Chem Soc 82:4436–4437

    Article  CAS  Google Scholar 

  49. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  50. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  54. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10(44):6615–6620

    Article  CAS  PubMed  Google Scholar 

  55. Dunning TH, Peterson KA, Woon DE (1998). In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman P, Schaefer HF III, Schreiner PR (eds) The Encyclopedia Of Computational Chemistry, 1st edn. Wiley, Chichester, p 88

    Google Scholar 

  56. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  PubMed  Google Scholar 

  57. Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152

    Article  CAS  PubMed  Google Scholar 

  58. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  59. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  60. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  PubMed  Google Scholar 

  61. Domingo LR, Rios-Gutiérrez M, Pérez P (2016) Molecules 21:748–769

    Article  CAS  PubMed Central  Google Scholar 

  62. Parr RG, von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  63. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  64. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615–4624

    Article  CAS  PubMed  Google Scholar 

  65. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2015) Gaussian 09 Revision E.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  67. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) J Molec Struct (THEOCHEM) 865:68–72

    Article  CAS  Google Scholar 

  68. Champagne B, Mosley DH, Fripiat JG, André JM, Bernard A, Bettonville S, François P, Momtaz A (1998) J Molec Struct (THEOCHEM) 454:149–159

    Article  Google Scholar 

  69. Champagne B, Cavillot V, André JM, François P, Momtaz A (2006) Int J Quantum Chem 106:588–598

    Article  CAS  Google Scholar 

  70. Domingo LR, Ríos-Gutiérrez M, Pérez P (2020) RSC Adv 10:15394–15405

    Article  CAS  Google Scholar 

  71. Domingo LR, Kula K, Ríos-Gutiérrez M (2020) Eur J Org Chem 2020:5938–5948

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia, which financially supported this work. M.C. is grateful to UNamur for financially contributing to his research stay. The calculations were performed on the computers of the « Consortium des équipements de Calcul Intensif (CÉCI) » (http://www.ceci-hpc.be), including those of the « UNamur Technological Platform of High-Performance Computing (PTCI) » (http://www.ptci.unamur.be), for which we gratefully acknowledge the financial support from the FNRS-FRFC, the Walloon Region, and the University of Namur (Conventions No. 2.5020.11, GEQ U.G006.15, U.G018.19, 1610468, and RW/GEQ2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Champagne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

214_2022_2880_MOESM1_ESM.pdf

Supplementary file1 The list of thermochemical data calculated with different exchange-correlation functionals, conceptual DFT descriptors of the reactants, frontier molecular orbital diagrams of the uncatalyzed and LA-catalyzed DA reactions between 2,5-DMF and ethylene in solution (1,4-dioxane, chloroform, and acetonitrile), thermochemical data of the AlCl3 complexation reaction with solvent molecules and with the O atom of 2,5-DMF, as well as energies, enthalpies, free enthalpies and entropies of the reactants, products and TSs are given in the SI.pdf file. (PDF 1981 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chellegui, M., Champagne, B. & Trabelsi, M. Lewis acid-catalyzed Diels–Alder cycloaddition of 2,5-dimethylfuran and ethylene: a density functional theory investigation. Theor Chem Acc 141, 21 (2022). https://doi.org/10.1007/s00214-022-02880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02880-y

Keywords

Navigation