Log in

Structural exploration and properties of (BN)6 cluster via ab initio in combination with particle swarm optimization method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The particle swarm optimization method is used to search for the isomers of (BN)6 cluster, then the selected possible lower energy isomers are optimized using the DFT. Sixteen configurations that are stable stationary points on the potential energy surface at B3LYP/6-31G (d) level are found. Among the isomers, six of them have been reported and ten new low energy structures are found for the first time. We calculated the geometry optimization, infrared spectrum, relative Gibbs free energy topological analysis and polarizability. The lowest energy structure S1 is found to be the most stable configuration, which agrees with the previous results. By calculating Gibbs free energy, we also get their energy orders at different temperatures. The main interaction between B and N is demonstrated to be covalent by the topological analysis of (BN)6. Our calculated energy gap and polarizability obey the rule that a cluster with a wide energy gap always has small mean static polarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  PubMed  Google Scholar 

  2. Shirinyan AS, Gusak AM, Wautelet M (2005) Phase diagram versus diagram of solubility: What is the difference for nanosystems? Acta Mater 53:5025–5032

    Article  CAS  Google Scholar 

  3. Hu JT, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  CAS  Google Scholar 

  4. Stakheev AY, Kustov LM (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal A 188:3–35

    Article  CAS  Google Scholar 

  5. Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  6. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  PubMed  Google Scholar 

  7. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407

    Article  Google Scholar 

  8. Kuno M, Oku T, Suganuma K (2001) Synthesis of boron nitride nanotubes and nanocapsules with LaB6. Diamond Relat Mater 10:1231–1234

    Article  CAS  Google Scholar 

  9. Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335–340

    Article  CAS  Google Scholar 

  10. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967

    Article  CAS  PubMed  Google Scholar 

  11. Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H (1996) Nanotubes in boron nitride laser heated at high pressure. Appl Phys Lett 69:2045–2047

    Article  CAS  Google Scholar 

  12. Iijima S (1980) High resolution electron microscopy of some carbonaceous materials. J Microsc 119:99–111

    Article  CAS  Google Scholar 

  13. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  14. Oku T, Kitahara H, Kuno M, Narita I, Suganuma K (2001) Synthesis, atomic structures and arrangement of carbon and boron nitride nanocage materials. Scr Mater 44:1557–1560

    Article  CAS  Google Scholar 

  15. Huo KF, Hu Z, Chen F, Fu JJ, Chen Y, Liu BH, Ding J, Dong ZL, White T (2002) Synthesis of boron nitride nanowires. Appl Phys Lett 80:3611–3613

    Article  CAS  Google Scholar 

  16. Sun ML, Slanina Z, Lee SL (1995) Square/hexagon route towards the boron-nitrogen clusters. Chem Phys Lett 233:279–283

    Article  CAS  Google Scholar 

  17. Seifert G, Fowler PW, Mitchell D, Porezag D, Frauenheim T (1997) Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem Phys Lett 268:352–358

    Article  CAS  Google Scholar 

  18. Alexandre SS, Mazzoni MSC, Chacham H (1999) Stability, geometry, and electronic structure of the boron nitride B36N36 fullerene. Appl Phys Lett 75:61–63

    Article  CAS  Google Scholar 

  19. Alexandre SS, Chacham H, Nunes RW (2001) Structure and energetics of boron nitride fullerenes: the role of stoichiometry. Phys Rev B 63:045402

    Article  Google Scholar 

  20. Koi N, Oku T (2004) Hydrogen storage in boron nitride and carbon clusters studied by molecular orbital calculations. Solid State Commun 13:121–124

    Article  Google Scholar 

  21. Koi N, Oku T (2004) Molecular orbital calculations of hydrogen storage in carbon and boron nitride clusters. Sci Technol Adv Mater 5:625–628

    Article  CAS  Google Scholar 

  22. Oku T, Nishiwaki A, Narita I, Gonda M (2003) Formation and structure of B24N24 clusters. Chem Phys Lett 380:620–623

    Article  CAS  Google Scholar 

  23. Martin JML, ElYazal J, Francois JP (1996) Structure and vibrations of BnNn (n=3–10). Chem Phys Lett 248:95–101

    Article  CAS  Google Scholar 

  24. Stephan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T, Sato T (1998) Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl Phys A 67:107–111

    Article  CAS  Google Scholar 

  25. Golberg D, Bando Y, Stephan O, Kurashima K (1998) Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl Phys Lett 73:2441–2443

    Article  CAS  Google Scholar 

  26. Wu HS, Jia JF (2004) Structures and stabilities of C24 and B12N12 clusters. Chinese J Struct Chem 23:580–585

    Google Scholar 

  27. Wu HS, Xu XH, Jia JF (2004) Structures and stabilities of B24N24 cage clusters. Acta Chim Sinica 62:28–33

    CAS  Google Scholar 

  28. Zhao Y-Q, Liu L, Hu C-E, Cheng Y (2018) Ab initio investigation of structure, stability, thermal behavior and infrared spectra of (BN)4 cluster. Comput Theor Chem 1141:1–6

    Article  CAS  Google Scholar 

  29. Strout DL (2000) Structure and stability of boron nitrides: isomers of B12N12. J Phys Chem A 104:3364–3366

    Article  CAS  Google Scholar 

  30. Matxain JM, Ugalde JM, Towler MD, Needs RJ (2003) Stability and arornaticity of BiNi rings and fullerenes. J Phys Chem A 107:10004–10010

    Article  CAS  Google Scholar 

  31. Jia JF, Wu HS, Jiao HJ (2003) Structure and stability of (BN)n clusters. Acta Chim Sin 61:653–659

    CAS  Google Scholar 

  32. Nirmala V, Kolandaivel P (2005) Post Hartree-Fock and density functional theory studies on (BN)n=1–10 clusters. Int J Nanosci 04:377–388

    Article  CAS  Google Scholar 

  33. Xu SH, Zhang MY, Zhao YY, Chen BG, Zhang J, Sun CC (2006) Stability and property of planar (BN)x clusters. Chem Phys Lett 423:212–214

    Article  CAS  Google Scholar 

  34. Song Y, Chen HS, Zhang CR, Wang GH (2005) Structures and bonding properties of (BN)(n) (n<=12) clusters. Acta Phys Chim Sin 21:735–739

    Article  CAS  Google Scholar 

  35. Wang Y, Lv J, Zhu L, Ma Y (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82:094116

    Article  Google Scholar 

  36. Frisch MJ Trucks GW Schlegel HB et al. (2009) GAUSSIAN 09, Revision B. 01. Gaussian Inc., Wallingford, CT.

  37. Lv ZL, Cheng Y, Chen XR, Cai LC (2015) Structural exploration and properties of (H2O)4+ cluster via ab initio in combination with particle swarm optimization method. Chem Phys 452:25–30

    Article  CAS  Google Scholar 

  38. Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014) Ab initio investigation of the lower energy candidate structures for (H2O)5+ water cluster. J Chem Phys 141:054309

    Article  PubMed  Google Scholar 

  39. Lv J, Wang Y, Zhu L, Ma Y (2014) B38: an all-boron fullerene analogue. Nanoscale 6:11692–11696

    Article  CAS  PubMed  Google Scholar 

  40. Becke AD (1988) Density-functional exchange-enegry approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  41. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  42. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700

    Article  CAS  PubMed  Google Scholar 

  43. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  44. Guerini S, Piquini P (2003) Structural, electronic, and vibrational properties of BxNy (x+y=6) clusters. Int J Quantum Chem 95:329–335

    Article  CAS  Google Scholar 

  45. Singh NJ, Park M, Min SK, Suh SB, Kim KS (2006) Magic and antimagic protonated water clusters: exotic structures with unusual dynamic effects. Angew Chem Int Ed 45:3795–3800

    Article  CAS  Google Scholar 

  46. Cioslowski J (1991) Atoms in molecules: a quantum theory. Science 252:1566–1567

    Article  Google Scholar 

  47. Parthasarathi R, Subramanian V, Sathyamurthy N (2006) Hydrogen bonding without borders: an atoms-in-molecules perspective. J Phys Chem A 110:3349–3351

    Article  CAS  PubMed  Google Scholar 

  48. Matta CF, Bader RFW (2000) An atoms-in-molecules study of the genetically-encoded amino acids: i. effects of conformation and of tautomerization on geometric, atomic, and bond properties. Proteins Struct Funct Bioinform 40:310–329

    Article  CAS  Google Scholar 

  49. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. WIREs Comput Mol Sci 2:1–42

    Article  CAS  Google Scholar 

  50. Minkin VI, Glukhovtsev MN, Simkin BY (1988) σ-Aromaticity and σ-antiaromaticity. J Mol Struct Theochem 50:93–110

    Article  CAS  Google Scholar 

  51. Perez-Juste I, Mandado M, Carballeira L (2010) Contributions from orbital-orbital interactions to nucleus-independent chemical shifts and their relation with aromaticity or antiaromaticity of conjugated molecules. Chem Phys Lett 491:224–229

    Article  CAS  Google Scholar 

  52. Karadakov PB, Horner KE (2013) Magnetic shielding in and around benzene and cyclobutadiene: a source of information about aromaticity, antiaromaticity, and chemical bonding. J Phys Chem A 117:518–523

    Article  CAS  PubMed  Google Scholar 

  53. Schleyer PV, Maerker C, Dransfeld A, Jiao HJ, Hommes N (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  PubMed  Google Scholar 

  54. Schleyer PV, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes N (2001) Dissected nucleus-independent chemical shift analysis of pi-aromaticity and antiaromaticity. Org Lett 3:2465–2468

    Article  CAS  PubMed  Google Scholar 

  55. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PV (2006) Which NICS aromaticity index for planar pi rings is best? Org Lett 8:863–866

    Article  CAS  PubMed  Google Scholar 

  56. Arrué L, Pino-Rios R (2020) Revisiting (anti)aromaticity and chemical bond in planar BxNx clusters (x=2-11). Int J Quantum Chem 120:e26403

    Article  Google Scholar 

  57. Guliamov O, Kronik L, Martin JML (2007) Polarizability of small carbon cluster anions from first principles. J Phys Chem A 111:2028–2032

    Article  CAS  PubMed  Google Scholar 

  58. Namazian M, Orangi N, Noorbala MR (2014) Thermodynamic stability and structural parameters of carbon nanoclusters. J Theor Comput Chem 13:1450058

    Article  CAS  Google Scholar 

  59. Buckingham AD (2014) Communication: permanent dipoles contribute to electric polarization in chiral NMR spectra. J Chem Phys 140:011103

    Article  PubMed  Google Scholar 

  60. Hohm U (2000) Is there a minimum polarizability principle in chemical reactions? J Phys Chem A 104:8418–8423

    Article  Google Scholar 

  61. Parr RG, Chattaraj PK (1991) Principle of maximun hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  62. Shevlin SA, Guo ZX, van Dam HJJ, Sherwood P, Catlow CRA, Sokol AA, Woodley SM (2008) Structure, optical properties and defects in nitride (III–V) nanoscale cage clusters. Phys Chem Chem Phys 10:1944–1959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports of the NSAF (Grant No. U1830101) and the National Natural Science Foundation of China (Grant No. 11504035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui-E Hu or Bai-Ru Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 572 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YQ., Cheng, Y., Hu, CE. et al. Structural exploration and properties of (BN)6 cluster via ab initio in combination with particle swarm optimization method. Theor Chem Acc 140, 51 (2021). https://doi.org/10.1007/s00214-021-02759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02759-4

Keywords

Navigation