Log in

Microscopic binding of butyrylcholinesterase with quinazolinimine derivatives and the structure–activity correlation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Butyrylcholinesterase (BChE) is not only an important protein for development of anti-cocaine medication but also an established drug target to develop new treatment for Alzheimer’s disease (AD). The molecular basis of interaction of a new series of quinazolinimine derivatives as BChE inhibitors has been studied by molecular docking and molecular dynamics (MD) simulations. The molecular docking and MD simulations revealed that all of these inhibitors bind with BChE in similar binding mode. Based on the similar binding mode, we have carried out three-dimensional quantitative structure–activity relationship (3D-QSAR) studies on these inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), to understand the structure–activity correlation of this series of inhibitors and to develop predictive models that could be used in the design of new inhibitors of BChE. The study has resulted in satisfactory 3D-QSAR models. We have also developed ligand-based 3D-QSAR models. The contour maps obtained from the 3D-QSAR models in combination with the simulated binding structures help to better interpret the structure–activity relationship and is consistent with available experimental activity data. The satisfactory 3D-QSAR models strongly suggest that the determined BChE-inhibitor binding modes are reasonable. The identified binding modes and developed 3D-QSAR models for these BChE inhibitors are expected to be valuable for rational design of new BChE inhibitors that may be valuable in the treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carreiras MC, Marco JL (2004) Curr Pharm Des 10:3167–3175

    Article  CAS  Google Scholar 

  2. Campiani G, Fattorusso C, Butini S, Gaeta A, Agnusdei M, Gemma S, Persico M, Catalanotti B, Savini L, Nacci V, Novellino E, Holloway HW, Greig NH, Belinskaya T, Fedorko JM, Saxena A (2005) J Med Chem 48:1919–1929

    Google Scholar 

  3. Salloway S, Mintzer J, Weiner MF, Cummings JL (2008) Alzheimers Dement 4:65–79

    Article  CAS  Google Scholar 

  4. Rosini M, Andrisano V, Bartolini M, Bolognesi ML, Hrelia P, Minarini A, Tarozzi A, Melchiorre C (2005) J Med Chem 48:360–363

    Article  CAS  Google Scholar 

  5. Schliebs R, Arendt T (2006) J Neural Transm 113:1625–1644

    Article  CAS  Google Scholar 

  6. Decker M (2005) Eur J Med Chem 40:305–313

    Article  CAS  Google Scholar 

  7. Zaheer-ul H, Uddin R, Yuan H, Petukhov PA, Choudhary MI, Madura JD (2008) J Chem Inf Model 48:1092–1103

    Article  Google Scholar 

  8. Pan L, Tan J-H, Hou J-Q, Huang S-L, Gu L-Q, Huang Z-S (2008) Bioorg Med Chem Lett 18:3790–3793

    Article  CAS  Google Scholar 

  9. Fang L, Kraus B, Lehmann J, Heilmann J, Zhang Y, Decker M (2008) Bioorg Med Chem Lett 18:2905–2909

    Article  CAS  Google Scholar 

  10. Zheng F, Zhan C-G (2008) J Comput Aided Mol Des 22:661–671

    Article  CAS  Google Scholar 

  11. Zhan C-G, Zheng F, Landry DW (2003) J Am Chem Soc 125:2462–2474

    Article  CAS  Google Scholar 

  12. Gorelick DA (1997) Drug Alcohol Depend 48:159–165

    Article  CAS  Google Scholar 

  13. Yu Q-S, Holloway HW, Utsuki T, Brossi A, Greig NH (1999) J Med Chem 42:1855–1861

    Article  CAS  Google Scholar 

  14. Mesulam M-M, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Neuroscience 110:627–639

    Article  CAS  Google Scholar 

  15. Greig NH, Utsuki DK, Ingram DK, Wang Y, Pepeu G, Scali C, Yu Q-S, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005) Proc Natl Acad Sci USA 102:17213–17218

    Article  CAS  Google Scholar 

  16. Duysen EG, Li B, Darvesh S, Lockridge O (2007) Toxicology 233:60–69

    Article  CAS  Google Scholar 

  17. Li B, Stribley JA, Ticu A, **e W, Schopfer LM, Hammond P, Brimijoin S, Hinrichs SH, Lockridge O (2000) J Neurochem 75:1320–1331

    Article  CAS  Google Scholar 

  18. Decker M, Krauth F, Lehmann J (2006) Bioorg Med Chem 14:1966–1977

    Article  CAS  Google Scholar 

  19. Decker M (2006) J Med Chem 49:5411–5413

    Article  CAS  Google Scholar 

  20. Decker M, Kraus B, Heilmann J (2008) Bioorg Med Chem 16:4252–4261

    Article  CAS  Google Scholar 

  21. Jorgensen WL (2009) Acc Chem Res 42:724–733

    Google Scholar 

  22. Joseph-McCarthy D (1999) Pharmacol Therap 84:179–191

    Article  CAS  Google Scholar 

  23. Davis AM, Teague SJ, Kleywegt GJ (2003) Angew Chem Int Ed 42:2718–2736

    Article  CAS  Google Scholar 

  24. Martin YC (1998) Perspec Drug Discov Design 12:3–23

    Article  Google Scholar 

  25. Cramer RD, Patterson DE, Bunce JDJ (1988) Am Chem Soc 110:5959–5967

    Google Scholar 

  26. Kubinyi H (ed) (1993) 3D-QSAR in drug design. Theory, methods and applications. ESCOM, Leiden (NL)

    Google Scholar 

  27. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  28. Bohm M, Sturzebecher J, Klebe G (1999) J Med Chem 42:458–477

    Article  CAS  Google Scholar 

  29. AbdulHameed MDM, Hamza A, Liu J, Huang X, Zhan C-GJ (2008) Chem Inf Mod 48:179–185

    Article  CAS  Google Scholar 

  30. Kuo CL, Assefa H, Kamath S, Brzozowski Z, Slawinski J, Saczewski F, Buolamwini JK, Neamati N (2004) J Med Chem 47:385–399

    Article  CAS  Google Scholar 

  31. Yang G-F, Lu H-T, **ong Y, Zhan C-G (2006) Bioorg Med Chem 14:1462–1473

    Article  CAS  Google Scholar 

  32. Debnath AK (2001) Mini Rev Med Chem 1:187–195

    Article  CAS  Google Scholar 

  33. Abdulhameed MDM, Hamza A, Liu J, Zhan C-GJ (2008) Chem Inf Model 48:1760–1772

    Article  CAS  Google Scholar 

  34. Besler BH, Merz KM Jr, Kollman PA (1990) J Comp Chem 11:431–439

    Article  CAS  Google Scholar 

  35. Singh UC, Kollman PA (1984) J Comp Chem 5:129–145

    Article  CAS  Google Scholar 

  36. Rarey M, Kramer B, Lengauer T, Kleb G (1996) J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  37. Rarey M, Wefing S, Lengauer T (1996) J Comput Aided Mol Design 10:41–54

    Article  CAS  Google Scholar 

  38. AbdulHameed MDM, Hamza A, Zhan C-G (2006) J Phys Chem B 110:26365–26374

    Article  CAS  Google Scholar 

  39. Case DA, Darden TA, III Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8. University of California, San Francisco

    Google Scholar 

  40. Jorgensen WL, Chandrasekhar J, Madura JD, Klein MLJ (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  41. Berendsen HC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  42. Ryckaert JP, Ciccotti G, Berendsen HC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  43. Essmann U, Perera L, Berkowitz ML, Darden TA, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  44. Datar P, Desai P, Coutinho E, Iyer K (2002) J Mol Model 8:290–301

    Article  CAS  Google Scholar 

  45. Bush BL, Nachbar RB (1993) J Comp Aided Mol Design 7:587–619

    Article  CAS  Google Scholar 

  46. Tripos Associates, Inc., 1699 S. Hanley, St.Louis MI 63144, USA

  47. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F (2003) J Biol Chem 278:41141–41147

    Article  CAS  Google Scholar 

  48. Sperandiodasilva GM, Sant’Anna CMR, Barreiro EJ (2004) Bioorg Med Chem 12:3159–3166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by NIH (grant R01 DA013930 to CGZ). CSR worked in CGZ’s laboratory as a NIDA Summer Research Fellow (from School of Informatics, Indiana University) through a supplemental award (R01 DA013930-06S2 to CGZ). The authors also acknowledge the Center for Computational Sciences (CCS) at University of Kentucky for supercomputing time on IBM X-series Cluster with 340 nodes or 1,360 processors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Guo Zhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

AbdulHameed, M.D.M., Liu, J., Pan, Y. et al. Microscopic binding of butyrylcholinesterase with quinazolinimine derivatives and the structure–activity correlation. Theor Chem Acc 130, 69–82 (2011). https://doi.org/10.1007/s00214-011-0965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0965-1

Keywords

Navigation