Log in

Long-Range van der Waals Interactions in Density Functional Theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The early difficulties in accounting for long-range van der Waals interactions in the framework of density functional theory (DFT) have been overcome to a certain extent in recent works by several groups, and those interactions can be computed numerically. In this paper a derivation of the analytical form of the attractive van der Waals interaction between two neutral atoms with polarizabilities α1 and α2 at large distance R, namely E int=−C 6 α1 α2/R 6 is performed within the context of DFT. Use is made of the properties of the Coulomb correlation hole, and it is shown that nonlocal Coulomb correlations are responsible for long-range dispersion interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohn W, Sham LJ (1965). Phys Rev 140:A1133

    Article  Google Scholar 

  2. Parr RG, Yang W (1989). Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  3. Dreizler RM, Gross EKU (1990). Density functional theory. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  4. Perdew JP, Kurth S (2003). A primer in density functional theory. In: Fiolhais C, Nogueria F, Marques M (eds) Lecture notes in physics, Vol 620. Springer, Berlin, Heidelberg, New York, pp 1

    Google Scholar 

  5. Engel E (2003). A Primer in density functional theory. In: Fiolhais C, Nogueria F, Marques M (eds) Lecture notes in physics, Vol 620. Springer, Berlin, Heidelberg, New York, pp 56

    Google Scholar 

  6. Adamo C, Ernzerhof M, Scuseria GE (2000). J Chem Phys 112:2643

    Article  CAS  Google Scholar 

  7. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2004). Phys Rev B 69:075102

    Article  CAS  Google Scholar 

  8. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2004). Phys Rev Lett 91:146401

    Article  CAS  Google Scholar 

  9. Dobson JF, Wang J (1999). Phys Rev Lett 82:2123

    Article  CAS  Google Scholar 

  10. Rydberg H, Dion M, Jacobson N, Schroder E, Hyldgaard P, Simak SI, Langreth DC, Lundqvist BI (2003). Phys Rev Lett 91:126402

    Article  PubMed  CAS  Google Scholar 

  11. Langreth DC, Dion M, Rydberg H, Schroder E, Hyldgaard P, Lundqvist BI (2005). Int J Quantum Chem 101:599

    Article  CAS  Google Scholar 

  12. Angyan JG, Gerber IC, Savin A, Toulouse J (2005). Phys Rev A 72:012510

    Article  CAS  Google Scholar 

  13. Tao J, Perdew JP (2005). J Chem Phys 122:114102

    Article  PubMed  CAS  Google Scholar 

  14. Becke AD, Johnson ER (2005). J Chem Phys 122:154104

    Article  PubMed  CAS  Google Scholar 

  15. Almbladh CO, von Barth U (1985). Phys Rev B 31:3231

    Article  CAS  Google Scholar 

  16. Umrigar CJ, Gonze X (1994). Phys Rev A 50:3827

    Article  PubMed  CAS  Google Scholar 

  17. Niquet YM, Fuchs M, Gonze X (2003). J Chem Phys 118:9504

    Article  CAS  Google Scholar 

  18. Alonso JA, Girifalco LA (1978). Phys Rev B 17:3735

    Article  CAS  Google Scholar 

  19. Gunnarson O, Jonson M, Lundqvist BI (1979). Phys Rev B 20:3136

    Article  Google Scholar 

  20. Gritsenko OV, Van Leeuwen R, Baerends EJ (1994). J Chem Phys 101:8955

    Article  CAS  Google Scholar 

  21. Van Leeuwen R, Gritsenko OV, Baerends EJ (1995). Z Phys D 33:229

    Article  CAS  Google Scholar 

  22. Alonso JA, March NH (1983). J Chem Phys 78:1382

    Article  CAS  Google Scholar 

  23. Gopinathan MS, Whitehead MA, Bogdanovic R (1976). Phys Rev A 14:1

    Article  CAS  Google Scholar 

  24. Chu X, Dalgarno A (2004). J Chem Phys 121:4083

    Article  PubMed  CAS  Google Scholar 

  25. Mahan GD, Subbaswamy KR (1990). Local density theory of polarizability. Plenum Press, New York

    Google Scholar 

  26. Handy NC, Marron MT, Silverstone HJ (1969). Phys Rev 180:45

    Article  CAS  Google Scholar 

  27. Hoffmann-Ostenhof M, Hoffman-Osdtenhof T (1977). Phys Rev A 16:1782

    Article  CAS  Google Scholar 

  28. Arellano JS, Molina LM, Rubio A, Alonso JA (2000). J Chem Phys 112: 8114

    Article  CAS  Google Scholar 

  29. Okamoto Y, Miyamoto Y (2001). J Phys Chem B 105:3470

    Article  CAS  Google Scholar 

  30. Arellano JS, Molina LM, Rubio A, López MJ, Alonso JA (2002). J Chem Phys 117:2281

    Article  CAS  Google Scholar 

  31. Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y, Yip S (2003). J Chem Phys 119:2376

    Article  CAS  Google Scholar 

  32. Tournus F, Charlier JC (2005). Phys Rev B 71:165421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, J.A., Mañanes, A. Long-Range van der Waals Interactions in Density Functional Theory. Theor Chem Acc 117, 467–472 (2007). https://doi.org/10.1007/s00214-006-0079-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0079-3

Keywords

PACS numbers

Navigation