Log in

18β-glycyrrhetinic acid ameliorates MPTP-induced neurotoxicity in mice through activation of microglial anti-inflammatory phenotype

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

18β-glycyrrhetinic acid (18β-GA) has been reported to have anti-inflammatory and neuroprotective effects. However, the therapeutic effect of 18β-GA in Parkinson’s disease (PD) has not been defined.

Objective

The current study aimed to evaluate the potential therapeutic effects of 18β-GA in treating PD by mitigating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity.

Results

The study showed that 18β-GA has anti-inflammatory effects by upregulating TREM2 expression in BV2 cells, which correlates with the presence of NF-E2-related factor-2 (Nrf2). 18β-GA reduced inflammation in BV2 cells treated with 1-methyl-4- phenylpyridinium (MPP+) by enhancing TREM2 expression, which promotes an anti-inflammatory microglial phenotype. Repeated administration of 18β-GA in MPTP-treated mice led to therapeutic effects by enhancing TREM2 expression, resulting in the activation of anti-inflammatory microglia. Moreover, 18β-GA attenuated the decrease in brain-derived neurotrophic factor (BDNF) levels in both MPP+-induced BV2 cells and MPTP-intoxicated mice, indicating the involvement of BDNF in the beneficial effects of 18β-GA.

Conclusions

It is probable that activating microglial anti-inflammatory response through TREM2 expression might serve as a novel therapeutic strategy for PD. Additionally, 18β-GA seems to hold potential as a new therapeutic agent for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11:1164–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baydyuk M, Xu B (2014) BDNF signaling and survival of striatal neurons. Front Cell Neurosci 8:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Caglayan C, Kandemir FM, Ayna A, Gur C, Kucukler S, Darendelioglu E (2022) Neuroprotective effects of 18beta-glycyrrhetinic acid against bisphenol A-induced neurotoxicity in rats: involvement of neuronal apoptosis, endoplasmic reticulum stress and JAK1/STAT1 signaling pathway. Metab Brain Dis 37:1931–1940

    Article  CAS  PubMed  Google Scholar 

  • Cao Q, Luo S, Yao W, Qu Y, Wang N, Hong J, Murayama S, Zhang Z, Chen J, Hashimoto K, Qi Q, Zhang JC (2022a) Suppression of abnormal alpha-synuclein expression by activation of BDNF transcription ameliorates Parkinson’s disease-like pathology. Mol Ther Nucleic Acids 29:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q, Zou Q, Zhao X, Zhang Y, Qu Y, Wang N, Murayama S, Qi Q, Hashimoto K, Lin S, Zhang JC (2022b) Regulation of BDNF transcription by Nrf2 and MeCP2 ameliorates MPTP-induced neurotoxicity. Cell Death Discov 8:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YL, Chen CL, Kuo CL, Chen BC, You JS (2010) Glycyrrhetinic acid inhibits ICAM-1 expression via blocking JNK and NF-kappaB pathways in TNF-alpha-activated endothelial cells. Acta Pharmacol Sin 31:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HJ, Kang SP, Lee IJ, Lin YL (2014) Glycyrrhetinic acid suppressed NF-kappaB activation in TNF-alpha-induced hepatocytes. J Agric Food Chem 62:618–625

    Article  CAS  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • Finney RS, Somers GF (1958) The antiinflammatory activity of glycyrrhetinic acid and derivatives. J Pharm Pharmacol 10:613–620

    Article  CAS  PubMed  Google Scholar 

  • Fujita A, Fujita Y, Pu YY, Chang LJ, Hashimoto K (2020) MPTP-induced dopaminergic neurotoxicity in mouse brain is attenuated after subsequent intranasal administration of (R)-ketamine: a role of TrkB signaling. Psychopharmacology 237:83–92

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17:1954–1956

    Article  CAS  PubMed  Google Scholar 

  • Giunti D, Parodi B, Cordano C, Uccelli A, Kerlero de Rosbo N (2014) Can we switch microglia’s phenotype to foster neuroprotection? Focus on multiple sclerosis. Immunology 141:328–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan YF, Huang GB, Xu MD, Gao F, Lin S, Huang J, Wang J, Li YQ, Wu CH, Yao S, Wang Y, Zhang YL, Teoh JP, Xuan A, Sun XD (2020) Anti-depression effects of ketogenic diet are mediated via the restoration of microglial activation and neuronal excitability in the lateral habenula. Brain Behav Immun 88:748–762

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang LJ, Wang QZ, Zhang DD, Zhao QY, Zhang JQ, **e L, Liu GY, You ZL (2019) Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrino 107:37–45

    Article  CAS  Google Scholar 

  • He J, **ang Z, Zhu X, Ai Z, Shen J, Huang T, Liu L, Ji W, Li T (2016) Neuroprotective effects of 7, 8-dihydroxyflavone on midbrain dopaminergic neurons in MPP(+)-treated monkeys. Sci Rep 6:34339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Zheng Y, Huang L, Ye J, Ye Y, Luo H, Chen X, Yao W, Chen J, Zhang JC (2022) Nrf2 regulates the arginase 1(+) microglia phenotype through the initiation of TREM2 transcription, ameliorating depression-like behavior in mice. Transl Psychiatry 12:459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166:127–135

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  • Hussain H, Green IR, Shamraiz U, Saleem M, Badshah A, Abbas G, Rehman NU, Irshad M (2018) Therapeutic potential of glycyrrhetinic acids: a patent review (2010–2017). Expert Opin Ther Pat 28:383–398

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Inoue K, Takeuchi T, Nagata N, Shibata S (1993) Inhibition of rat acute inflammatory paw oedema by dihemiphthalate of glycyrrhetinic acid derivatives: comparison with glycyrrhetinic acid. J Pharm Pharmacol 45:1067–1071

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T (2017) Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci 18(10):2135

  • Kang SS, Zhang Z, Liu X, Manfredsson FP, Benskey MJ, Cao X, Xu J, Sun YE, Ye K (2017a) TrkB neurotrophic activities are blocked by alpha-synuclein, triggering dopaminergic cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 114:10773–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SS, Zhang Z, Liu X, Manfredsson FP, He L, Iuvone PM, Cao X, Sun YE, ** L, Ye K (2017b) Alpha-synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci U S A 114:1183–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SS, Ahn EH, Zhang ZT, Liu X, Manfredsson FP, Sandoval IM, Dhakal S, Iuvone PM, Cao XB, Ye KQ (2018) Alpha-synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson’s disease. Embo J 37(12):e98878

  • Kao TC, Shyu MH, Yen GC (2010) Glycyrrhizic acid and 18beta-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3beta signaling and glucocorticoid receptor activation. J Agric Food Chem 58:8623–8629

    Article  CAS  PubMed  Google Scholar 

  • Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL, Nakamura MC, Yenari MA (2015) Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci 35:3384–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefaki M, Papaevgeniou N, Tur JA, Vorgias CE, Sykiotis GP, Chondrogianni N (2020) The dietary triterpenoid 18alpha-glycyrrhetinic acid protects from MMC-induced genotoxicity through the ERK/Nrf2 pathway. Redox Biol 28:101317

    Article  CAS  PubMed  Google Scholar 

  • Li CX, Zhao B, Lin CZ, Gong ZP, An XX (2019) TREM2 inhibits inflammatory responses in mouse microglia by suppressing the PI3K/NF-kappa B signaling. Cell Biol Int 43:360–372

    Article  CAS  PubMed  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Taso O, Wang R, Bayram S, Graham AC, Garcia-Reitboeck P, Mallach A, Andrews WD, Piers TM, Botia JA, Pocock JM, Cummings DM, Hardy J, Edwards FA, Salih DA (2020) Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Hum Mol Genet 29:3224–3248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud AM, Hussein OE, Hozayen WG, Abd El-Twab SM (2017) Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPARgamma and Nrf2: Protective effect of 18beta-Glycyrrhetinic acid. Chem Biol Interact 270:59–72

    Article  CAS  PubMed  Google Scholar 

  • Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizui T, Ishikawa Y, Kumanogoh H, Kojima M (2016) Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: multi-ligand model of growth factor signaling. Pharmacol Res 105:93–98

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi M, Manaheji H, Maghsoudi N, Danyali S, Baniasadi M, Zaringhalam J (2020) Microglia dependent BDNF and proBDNF can impair spatial memory performance during persistent inflammatory pain. Behav Brain Res 390:112683

    Article  CAS  PubMed  Google Scholar 

  • Molina-Holgado F, Doherty P, Williams G (2008) Tandem repeat peptide strategy for the design of neurotrophic factor mimetics. CNS Neurol Disord Drug Targets 7:110–119

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184:92–99

    Article  CAS  PubMed  Google Scholar 

  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175

    Article  CAS  PubMed  Google Scholar 

  • Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G (2020) BDNF as a promising therapeutic agent in Parkinson’s disease. Int J Mol Sci 21(3):1170

  • Porras G, Li Q, Bezard E (2012) Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med 2:a009308

    Article  PubMed  PubMed Central  Google Scholar 

  • Sconce MD, Churchill MJ, Moore C, Meshul CK (2015) Intervention with 7,8-dihydroxyflavone blocks further striatal terminal loss and restores motor deficits in a progressive mouse model of Parkinson’s disease. Neuroscience 290:454–471

    Article  CAS  PubMed  Google Scholar 

  • Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342:321–334

    Article  CAS  PubMed  Google Scholar 

  • Stecanella LA, Bitencourt APR, Vaz GR, Quarta E, Silva Junior JOC, Rossi A (2021) Glycyrrhizic acid and its hydrolyzed metabolite 18beta-glycyrrhetinic acid as specific ligands for targeting nanosystems in the treatment of liver cancer. Pharmaceutics 13(11):1792

  • Stefani A, Pierantozzi M, Cardarelli S, Stefani L, Cerroni R, Conti M, Garasto E, Mercuri NB, Marini C, Sucapane P (2022) Neurotrophins as therapeutic agents for Parkinson’s disease; new chances from focused ultrasound? Front Neurosci 16:846681

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang R, Cao QQ, Hu SW, He LJ, Du PF, Chen G, Fu R, **ao F, Sun YR, Zhang JC, Qi Q (2021) Sulforaphane activates anti-inflammatory microglia, modulating stress resilience associated with BDNF transcription. Acta Pharmacol Sin 43(4):829–839

  • Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Breger LS, Lundblad M, Wan OW, Mattsson B, Luk KC, Lee VMY, Trojanowski JQ, Bjorklund A (2017) Modeling Parkinson’s disease pathology by combination of fibril seeds and alpha-synuclein overexpression in the rat brain. Proc Natl Acad Sci U S A 114:E8284–E8293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu B, Liang J, Ou Y, Zhang X, Zheng W, Wu R, Gan L, Li D, Lu Y, Wu J, David Hong W, Zhang K, Wu P, ** J, Wong WL (2022) Novel 18beta-glycyrrhetinic acid derivatives as a two-in-one agent with potent antimicrobial and anti-inflammatory activity. Bioorg Chem 122:105714

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Kao TC, Lo WH, Yen GC (2011) Glycyrrhizic acid and 18beta-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-kappaB through PI3K p110delta and p110gamma inhibitions. J Agric Food Chem 59:7726–7733

    Article  CAS  PubMed  Google Scholar 

  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:6145–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao Y, Xu J, Mao C, ** M, Wu Q, Zou J, Gu Q, Zhang Y, Zhang Y (2010) 18Beta-glycyrrhetinic acid ameliorates acute propionibacterium acnes-induced liver injury through inhibition of macrophage inflammatory protein-1alpha. J Biol Chem 285:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Noshita T, Yu T, Kidachi Y, Kamiie K, Umetsu H, Ryoyama K (2010) Novel effects of glycyrrhetinic acid on the central nervous system tumorigenic progenitor cells: induction of actin disruption and tumor cell-selective toxicity. Eur J Med Chem 45:2943–2948

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Zhang Y, Wang L, Li Z, Tang S, Wang Y, Gu N, Sun X, Li L (2022) TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J Neuroinflammation 19:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang T, Qin L, Gao HM, Wilson B, Ali SF, Zhang W, Hong JS, Liu B (2004) Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 18:589–591

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang S, Zhang M, Wang Z, He X, Hou Y, Bai G (2019) Glycyrrhetinic acid improves insulin-response pathway by regulating the balance between the Ras/MAPK and PI3K/Akt pathways. Nutrients 11(3):604

  • Zhang JQ, Rong PJ, Zhang LJ, He H, Zhou T, Fan YH, Mo L, Zhao QY, Han Y, Li SY, Wang YF, Yan W, Chen HF, You ZL (2021) IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci Adv 7(12):eabb9888

  • Zhou XL, Spittau B, Krieglstein K (2012) TGF beta signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflamm 9:210

Download references

Funding

This work is supported by the National Science Foundation of China (82204786 to WY, 81973748, 82174278 to JC, 81973341 to QQ, and 82271563 to JZ), Huang Zhendong Research Fund for Traditional Chinese Medicine of **an University (201911 to JC), Natural Science Foundation of Guangdong Province of China (2022A1515012512 to JZ), and the Medical Joint Fund of **an University.

Author information

Authors and Affiliations

Authors

Contributions

WY, JC, and QQ designed the research and wrote the manuscript. HYL performed the behavior test, qPCR assay, western blotting assay, immunofluorescence staining, and ELSA assay and analyzed the data. CSZ examined the levels of Nrf2 protein in the cytosol and nuclear fractions. LJH and ZFL assisted with the experiments and analyzed the data. JZ revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Qi Qi, Jia-xu Chen or Wei Yao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1838 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Zhang, C., He, L. et al. 18β-glycyrrhetinic acid ameliorates MPTP-induced neurotoxicity in mice through activation of microglial anti-inflammatory phenotype. Psychopharmacology 240, 1947–1961 (2023). https://doi.org/10.1007/s00213-023-06415-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-023-06415-6

Keywords

Navigation