Log in

Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

CDK4/6:

Cyclin-dependent kinase 4/6

PD-L1:

Programmed cell death ligand 1

PI3K:

Phosphatidylinositol 3-kinase

EMT:

Epithelial-mesenchymal transition

MMP9:

Matrix metalloproteinase 9

USP7:

Ubiquitin‑specific protease 7

GSK3β:

Glycogen synthase kinase 3β

References

  • Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18:128–134

    Article  CAS  PubMed  Google Scholar 

  • Catalán-González M, Carlos Montejo-González J (2009) Pharmacodynamics and pharmacokinetics of micafungin in adults, children and neonate. Rev Iberoam Micol 26:23–34

    Article  PubMed  Google Scholar 

  • Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E (2020) Tumor-associated macrophages in osteosarcoma: from mechanisms to therapy. Int J Mol Sci 21(15):5207

  • Chen R, Yang Q, Lee JD (2012) BMK1 kinase suppresses epithelial-mesenchymal transition through the Akt/GSK3β signaling pathway. Cancer Res 72:1579–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Cheng L, Qian W, Jiang Z, Sun L, Zhao Y, Zhou Y, Zhao L, Wang P, Duan W, Ma Q, Yang W (2018) Itraconazole inhibits invasion and migration of pancreatic cancer cells by suppressing TGF-β/SMAD2/3 signaling. Oncol Rep 39:1573–1582

    CAS  PubMed  Google Scholar 

  • Chen Z, Fang Z, Ma J (2021) Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomed Pharmacother 133:111068

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Chen D, Li J, He L, Chen T, Song D, Shan S, Wang J, Lu X, Lu B (2022) Ciclopirox drives growth arrest and autophagic cell death through STAT3 in gastric cancer cells. Cell Death Dis 13:1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Guo Y, Yang Y, Kan J, Dai S, Helian M, Li B, Xu J, Liu C (2016) Nitidine chloride suppresses epithelial-to-mesenchymal transition in osteosarcoma cell migration and invasion through Akt/GSK-3β/Snail signaling pathway. Oncol Rep 36:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Cho ES, Kang HE, Kim NH, Yook JI (2019) Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res 42:14–24

    Article  CAS  PubMed  Google Scholar 

  • Cole S, Gianferante DM, Zhu B, Mirabello L (2022) Osteosarcoma: a Surveillance, Epidemiology, and End Results program-based analysis from 1975 to 2017. Cancer 128:2107–2118

    Article  PubMed  Google Scholar 

  • Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z (2020) The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res 39:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong H, Diao H, Zhao Y, Xu H, Pei S, Gao J, Wang J, Hussain T, Zhao D, Zhou X, Lin D (2019) Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Prolif 52:e12633

    Article  PubMed  PubMed Central  Google Scholar 

  • Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84

    Article  CAS  PubMed  Google Scholar 

  • Du B, Shim JS (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21(7):965

  • Enoch DA, Idris SF, Aliyu SH, Micallef C, Sule O, Karas JA (2014) Micafungin for the treatment of invasive aspergillosis. J Infect 68:507–526

    Article  CAS  PubMed  Google Scholar 

  • Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A, Siegel RL (2022) Breast Cancer Statistics, 2022. CA Cancer J Clin 72:524–541

    Article  PubMed  Google Scholar 

  • Guilford FT, Yu S (2019) Antiparasitic and antifungal medications for targeting cancer cells literature review and case studies. Altern Ther Health Med 25:26–31

    PubMed  Google Scholar 

  • Hernández-Pérez S, Cabrera E, Salido E, Lim M, Reid L, Lakhani SR, Khanna KK, Saunus JM, Freire R (2017) DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene 36:4817

    Article  PubMed  Google Scholar 

  • Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, Henderson MA, Nightingale SS, Ho KM, Myles PS, Fox S, Riedel B, Sloan EK (2020) Preoperative β-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin Cancer Res 26:1803–1811

    Article  CAS  PubMed  Google Scholar 

  • Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P (2020) Role of cadherins in cancer-a review. Int J Mol Sci 21(20):7624

  • Kim HJ, Kim SY, Kim DH, Park JS, Jeong SH, Choi YW, Kim CH (2021) Crosstalk between HSPA5 arginylation and sequential ubiquitination leads to AKT degradation through autophagy flux. Autophagy 17:961–979

    Article  CAS  PubMed  Google Scholar 

  • Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G (2021) Breast cancer. Lancet 397:1750–1769

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Kang Y (2019) Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell 49:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masola V, Zaza G, Granata S, Gambaro G, Onisto M, Lupo A (2013) Everolimus-induced epithelial to mesenchymal transition in immortalized human renal proximal tubular epithelial cells: key role of heparanase. J Transl Med 11:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra T, Prasad P, Mukherjee P, Chaudhuri SR, Chatterji U, Roy SS (2018) Stemness and chemoresistance are imparted to the OC cells through TGFβ1 driven EMT. J Cell Biochem 119:5775–5787

    Article  CAS  PubMed  Google Scholar 

  • Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, Rivkees SA, Samuels M, Sosa JA, Stan MN, Walter MA (2016) 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 26:1343–1421

    Article  PubMed  Google Scholar 

  • Scott LJ (2017) Micafungin: a review in the prophylaxis and treatment of invasive Candida infections in paediatric patients. Paediatr Drugs 19:81–90

    Article  PubMed  Google Scholar 

  • Shoaib Z, Fan TM, Irudayaraj JMK (2022) Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol 179:201–217

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    Article  PubMed  Google Scholar 

  • Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455:813–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stribbling SM, Ryan AJ (2022) The cell-line-derived subcutaneous tumor model in preclinical cancer research. Nat Protoc 17:2108–2128

    Article  CAS  PubMed  Google Scholar 

  • Vazquez JA, Sobel JD (2006) Anidulafungin: a novel echinocandin. Clin Infect Dis 43:215–222

    Article  PubMed  Google Scholar 

  • Veggiani G, Gerpe MCR, Sidhu SS, Zhang W (2019) Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Pharmacol Ther 199:139–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijay GV, Zhao N, Den Hollander P, Toneff MJ, Joseph R, Pietila M, Taube JH, Sarkar TR, Ramirez-Pena E, Werden SJ, Shariati M, Gao R, Sobieski M, Stephan CC, Sphyris N, Miura N, Davies P, Chang JT, Soundararajan R, Rosen JM, Mani SA (2019) GSK3β regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res 21:37

    Article  PubMed  PubMed Central  Google Scholar 

  • von Lilienfeld-Toal M, Wagener J, Einsele H, Cornely OA, Kurzai O (2019) Invasive Fungal Infection Dtsch Arztebl Int 116:271–278

    Google Scholar 

  • Wang Q, Ma S, Song N, Li X, Liu L, Yang S, Ding X, Shan L, Zhou X, Su D, Wang Y, Zhang Q, Liu X, Yu N, Zhang K, Shang Y, Yao Z, Shi L (2016) Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Invest 126:2205–2220

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasmann RE, Muilwijk EW, Burger DM, Verweij PE, Knibbe CA, Brüggemann RJ (2018) Clinical pharmacokinetics and pharmacodynamics of micafungin. Clin Pharmacokinet 57:267–286

    Article  CAS  PubMed  Google Scholar 

  • Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q (2023) Repurposing antifungal drugs for cancer therapy. J Adv Res 48:259–273

    Article  CAS  PubMed  Google Scholar 

  • **a X, Liao Y, Huang C, Liu Y, He J, Shao Z, Jiang L, Dou QP, Liu J, Huang H (2019) Deubiquitination and stabilization of estrogen receptor α by ubiquitin-specific protease 7 promotes breast tumorigenesis. Cancer Lett 465:118–128

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Avtanski D, Saxena NK, Sharma D (2012) Leptin-induced epithelial-mesenchymal transition in breast cancer cells requires β-catenin activation via Akt/GSK3- and MTA1/Wnt1 protein-dependent pathways. J Biol Chem 287:8598–8612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaas AK, Steinbach WJ (2005) Micafungin: the US perspective. Expert Rev Anti Infect Ther 3:183–190

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Li Z, Zhao X, Guo L, Yu C, Qin J, Zhang S, Zhang Y, Yang X (2019) Ubiquitin-specific protease 7 promotes osteosarcoma cell metastasis by inducing epithelial-mesenchymal transition. Oncol Rep 41:543–551

    CAS  PubMed  Google Scholar 

  • Zhang Q, Cao C, Gong W, Bao K, Wang Q, Wang Y, Bi L, Ma S, Zhao J, Liu L, Tian S, Zhang K, Yang J, Yao Z, Song N, Shi L (2020) A feedforward circuit shaped by ECT2 and USP7 contributes to breast carcinogenesis. Theranostics 10:10769–10790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang J, Chen T, Wang J, Wang Y, Yu Z, Zhao K, Zheng K, Chen Y, Wang Z, Li B, Wang C, Huang W, Fu Z, Chen J (2021) α-Actinin1 promotes tumorigenesis and epithelial-mesenchymal transition of gastric cancer via the AKT/GSK3β/β-Catenin pathway. Bioengineered 12:5688–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82073849 to **u-Ju Luo), and the Natural Science Foundation of Hunan Province, China (No. 2021JJ30032 to **u-Ju Luo).

Author information

Authors and Affiliations

Authors

Contributions

L.X.J. and X.J.Y. conceived and designed the study. W.Q.L., W.L., L.Q.Y., and L.H.Y. conducted the experiments. W.Q.L., W.L., L.L., and W.D. analyzed the data. L.X.J., X.J.Y., and W.Q.L. wrote the manuscript. All authors read and approved the manuscript. The authors declare that all data were generated in-house and no paper mill was used.

Corresponding authors

Correspondence to **-Yun Xu or **u-Ju Luo.

Ethics declarations

Ethical statement

Animal experiments were conducted in accordance with the local ethics committee (2020sydw0931, the Department of Laboratory Animals of Central South University). The treatment of animals in all experiments conforms to the ethical standards of experimental animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qian-Lin Wang and Li Wang contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QL., Wang, L., Li, QY. et al. Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner. Naunyn-Schmiedeberg's Arch Pharmacol 397, 4447–4459 (2024). https://doi.org/10.1007/s00210-023-02903-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02903-w

Keywords

Navigation