Log in

The in vitro pharmacology of the peripherally restricted opioid receptor antagonists, alvimopan, ADL 08-0011 and methylnaltrexone

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study characterized the pharmacology of the peripherally restricted opioid receptor antagonists, alvimopan, its metabolite, ADL 08-0011, and methylnaltrexone. The activities of the compounds were investigated with respect to human or guinea pig opioid receptor binding and function in recombinant cell lines and mechanical responsiveness of the guinea pig ileum. Alvimopan and ADL 08-0011 had higher binding affinity than methylnaltrexone at human μ opioid receptors (pK i values of 9.6, 9.6, and 8.0, respectively). The compounds had different selectivities for the μ receptor over human δ and guinea pig κ opioid receptors. ADL 08-0011 had the highest μ receptor selectivity. With respect to their μ opioid receptor functional activity ([35S]GTPγS incorporation), methylnaltrexone had a positive intrinsic activity, consistent with partial agonism, unlike alvimopan and ADL 08-0011, which had negative intrinsic activities. Alvimopan, ADL 08-0011, and methylnaltrexone antagonized inhibitory responses mediated by the μ opioid agonist, endomorphin-1 (pA 2 values of 9.6, 9.4, and 7.6, respectively) and by U69593, a κ opioid agonist (pA 2 values of 8.4, 7.2, and 6.7, respectively). In morphine-naive guinea pig ileum, methylnaltrexone reduced, while alvimopan and ADL 08-0011 increased, the amplitude of electrically evoked contractions and spontaneous mechanical activity. In tissue from morphine-dependent animals, alvimopan and ADL 08-0011 increased spontaneous activity to a greater degree than methylnaltrexone. The data suggested that alvimopan-induced contractions resulted predominantly from an interaction with κ opioid receptors. It is concluded that alvimopan, ADL 08-0011, and methylnaltrexone differ in their in vitro pharmacological properties, particularly with respect to opioid receptor subtype selectivity and intrinsic activity. The clinical significance of the data from this study remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CTAP:

d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2

DMSO:

dimethyl sulfoxide

DPDPE:

[D-Pen2,5]-enkephalin

EDTA:

ethylenediaminetetraacetic acid

EFS:

electrical field stimulation

FBS:

fetal bovine serum

GNTI:

5′-guanidinonaltrindole

HEPES:

4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid N-(2-hydroxyethyl) piperazine-N′-(2-ethanesulfonic acid)

IA:

intrinsic activity

OBD:

opioid-induced bowel dysfunction

PBS:

phosphate-buffered saline

SDM25N:

(4bS,8aS,14bR)-5,6,7,8,14,14b-hexahydro-7-(2-methyl-2-propenyl)-4,8-methanobenzofuro[2,3-a]pyrido[4,3-b]carbazole-1,8a(9H)-diol

SNC 80:

([(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and U69593 ((+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide)

References

  • Ammer H, Schulz R (1993) Alteration in the expression of G-proteins and regulation of adenylate cyclase in human neuroblastoma SH-SY5Y cells chronically exposed to low-efficacy μ-opioids. Biochem J 295:263–271

    PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Bailey CP, Couch D, Johnson E, Griffiths K, Kelly E, Henderson G (2003) μ-Opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine. J Neurosci 23:10515–10520

    PubMed  CAS  Google Scholar 

  • Becker JAJ, Wallace A, Garzon A, Ingallinella P, Bianchi E, Cortese R, Simonin F, Kieffer BL, Pessi A (1999) Ligands for κ-opioid and ORL1 receptors identified from a conformationally constrained peptide combinatorial library. J Biol Chem 274:27513–27522

    Article  PubMed  CAS  Google Scholar 

  • Bennett MA, Murray TF, Aldrich JV (2005) Structure-activity relationships of arodyn, a novel acetylated kappa opioid receptor antagonist. J Pept Res 65:322–332

    Article  PubMed  CAS  Google Scholar 

  • Brent PJ, Chahl LA, Cantarella PA, Kavanagh C (1993) The κ-opioid receptor agonist U50,488H induces acute physical dependence in guinea-pigs. Eur J Pharmacol 241:149–156

    Article  PubMed  CAS  Google Scholar 

  • Brown DR, Goldberg LI (1985) The use of quaternary narcotic antagonists in opiate research. Neuropharmacology 24:181–191

    Article  PubMed  CAS  Google Scholar 

  • Camilleri M (2005) Alvimopan, a selective peripherally acting μ-opioid antagonist. Neurogastroenterol Motil 17:157–165

    Article  PubMed  CAS  Google Scholar 

  • Cassel JD, Daubert JD, Dehaven RN (2005) [3H]Alvimopan binding to the μ opioid receptor: Comparative binding kinetics of opioid antagonists. Eur J Pharmacol 520:29–36

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti S, Rivera M, Yan SZ, Tang WJ, Gintzler AR (1998) Chronic morphine augments \({{\text{G}}_{{{\text{ $ \beta $ $ \gamma $ }}}} } \mathord{\left/ {\vphantom {{{\text{G}}_{{{\text{ $ \beta $ $ \gamma $ }}}} } {{\text{G}}_{{{\text{s}}\alpha }} }}} \right. \kern-\nulldelimiterspace} {{\text{G}}_{{{\text{s}}\alpha }} }\) stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol Pharmacol 54:655–662

    PubMed  CAS  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Collier HOJ, Cuthbert NJ, Francis DL (1981) Model of opiate dependence in the guinea-pig isolated ileum. Br J Pharmacol 73:921–932

    PubMed  CAS  Google Scholar 

  • Culpepper-Morgan JA, Inturrisi CE, Portenoy RK, Foley K, Houde RW, Marsh F, Kreek MJ (1992) Treatment of opioid-induced constipation with oral naloxone: a pilot study. Clin Pharmacol Ther 52:90–95

    Article  PubMed  CAS  Google Scholar 

  • De Luca A, Coupar IM (1996) Insights into opioid action in the intestinal tract. Pharmacol Ther 69:103–115

    Article  PubMed  Google Scholar 

  • Emmerson PJ, McKinzie JH, Surface PL, Suter TM, Mitch CH, Statnick MA (2004) Na+ modulation, inverse agonism, and anorectic potency of 4-phenylpiperidine opioid antagonists. Eur J Pharmacol 494:121–130

    Article  PubMed  CAS  Google Scholar 

  • Foss JF (2001) A review of the potential role of methylnaltrexone in opioid bowel dysfunction. Am J Surg 182:19S–26S

    Article  PubMed  CAS  Google Scholar 

  • Foss JF, Schmith VD, Wallin BA, Du W, Melikian AP (2005) Alvimopan (Entereg™), a novel opioid antagonist, achieves active systemic concentrations. Clin Pharmacol Ther 77:74

    Google Scholar 

  • Goldberg LI, Merz H, Stockhaus K (1979) Quaternary derivatives of noroxymorphone which relieve intestinal immobility. US Patent 4176186

  • Greenwood-Van Meerveld B, Gardner CJ, Little PJ, Hicks GA, Dehaven-Hudkins DL (2004) Preclinical studies of opioids and opioid antagonists on gastrointestinal function. Neurogastroenterol Motil 16(Suppl 2):46–53

    Article  PubMed  Google Scholar 

  • Hirning LD, Mosberg HI, Hurst R, Hruby VJ, Burks TF, Porreca F (1985) Studies in vitro with ICI 174,864, [d-Pen2, d-Pen5]-enkephalin (DPDPE) and [d-Ala2, NMePhe4, Gly-ol]-enkephalin (DAGO). Neuropeptides 5:383–386

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Williams JT, Costa M, Furness JB (1987) Naloxone-induced depolarization and synaptic activation of myenteric neurons in morphine-dependent guinea pig ileum. Neurosci 21:595–602

    Article  CAS  Google Scholar 

  • Jones RM, Portoghese PS (2000) 5′-Guanidinonaltrindole, a highly selective and potent κ-opioid receptor antagonist. Eur J Pharmacol 396:49–52

    Article  PubMed  CAS  Google Scholar 

  • Knapp RJ, Malatynska E, Collins N, Fang L, Wang JY, Hruby VJ, Roeske WR, Yamamura HI (1995) Molecular biology and pharmacology of cloned opioid receptors. FASEB J 9:516–525

    PubMed  CAS  Google Scholar 

  • Knapp RJ, Santoro G, De Leon IA, Lee KB, Edsall SA, Waite S, Malatynska E, Varga E, Calderon SN, Rice KC, Rothman RB, Porreca F, Roeske WR, Yamamura HI (1996) Structure-activity relationships for SNC 80 and related compounds at cloned human delta and mu opioid receptors. J Pharmacol Exp Ther 277:1284–1291

    PubMed  CAS  Google Scholar 

  • Kotake AN, Kuwahara SK, Burton E, McCoy CE, Goldberg LI (1989) Variations in demethylation of N-methylnaltrexone in mice, rats, dogs and humans. Xenobiotica 19:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Kramer TH, Shook JE, Kazmierski W, Ayres EA, Wire WS, Hruby VJ, Burks TF (1989) Novel peptidic mu opioid antagonists: pharmacologic characterization in vitro and in vivo. J Pharmacol Exp Ther 249:544–551

    PubMed  CAS  Google Scholar 

  • Kurz A, Sessler DI (2003) Opioid-induced bowel dysfunction: Pathophysiology and potential new therapies. Drugs 63:649–671

    Article  PubMed  CAS  Google Scholar 

  • Lahti RA, Mickelson MM, McCall JM, Voigtlander PF (1985) [3H]U-69593, a highly selective ligand for the opioid kappa receptor. Eur J Pharmacol 109:281–284

    Article  PubMed  CAS  Google Scholar 

  • Lujan M, Rodriguez R (1981) Pharmacological characterization of opiate physical ependence in the isolated ileum of the guinea-pig. Br J Pharmacol 73:859–866

    PubMed  CAS  Google Scholar 

  • McLamore S, Ullrich T, Rothman RB, Xu H, Dersch C, Coop A, Davis P, Porreca F, Jacobson AE, Rice KC (2001) Effect of N-alkyl and N-alkenyl substituents in noroxymorphindole, 17-substituted-6,7-dehydro-4,5 α-epoxy-3,14-dihydroxy-6,7:2′,3′-indolomorphinans, on opioid receptor affinity, selectivity, and efficacy. J Med Chem 44:1471–1474

    Article  PubMed  CAS  Google Scholar 

  • Meissner W, Schmidt U, Hartmann M, Kath R, Reinhart K (2000) Oral naloxone reverses opioid-associated constipation. Pain 84:105–109

    Article  PubMed  CAS  Google Scholar 

  • Mundey MK, Ali A, Mason R, Wilson VG (2000) Pharmacological examination of contractile responses of the guinea-pig isolated ileum produced by μ-opioid receptor antagonists in the presence of, and following exposure to, morphine. Br J Pharmacol 131:893–902

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki H, Saitoh N, Nishio H, Takeuchi T, Hata F (1998) Inhibitory effect of endomorphin-1 and -2 on acetylcholine release from myenteric plexus of guinea pig ileum. Jap J Pharmacol 78:83–86

    Article  PubMed  CAS  Google Scholar 

  • Pappagallo M (2001) Incidence, prevalence, and management of opioid bowel dysfunction. Am J Surg 182:11S–18S

    Article  PubMed  CAS  Google Scholar 

  • Paulson DM, Kennedy DT, Donovick RA, Carpenter RL, Cherubini M, Techner L, Du W, Ma Y, Schmidt WK, Wallin B, Jackson D (2005) Alvimopan: an oral, peripherally acting, μ-opioid receptor antagonist for the treatment of opioid-induced bowel dysfunction—a 21-day treatment-randomized clinical trial. J Pain 6:184–192

    Article  PubMed  CAS  Google Scholar 

  • Sadée W, Wang D, Bilsky EJ (2005) Basal opioid receptor activity, neutral antagonists, and therapeutic opportunities. Life Sci 76:1427–1437

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WK (2001) Alvimopan (ADL 8-2698) is a novel peripheral-opioid antagonist. Am J Surg 182:27S–38S

    Article  PubMed  CAS  Google Scholar 

  • Schmith VD, Garnett W, Barr WH, Kelleher D, Young M, Sanderlin G, Coots S, Agyemang A, Dukes G (2005) Alvimopan pharmacokinetics (PK) & pharmacodynamics (PD) in patients with chronic constipation (CC). Clin Pharmacol Ther 77:49

    Article  Google Scholar 

  • Shahbazian A, Heinemann A, Schmidhammer H, Beubler E, Holzer-Petsche U, Holzer P (2002) Involvement of mu- and kappa-, but not delta-, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the guinea-pig intestine. Br J Pharmacol 135:741–750

    Article  PubMed  CAS  Google Scholar 

  • Statnick MA, Suter TM, Gackenheimer SL, Emmerson PJ, Quimby SJ, Gehlert DR, Wheeler WJ, Mitch CH (2003) Na+-dependent high affinity binding of [3H]LY515300, a 3,4-dimethyl-4-(3-hydroxyphenyl)piperidine opioid receptor inverse agonist. Eur J Pharmacol 482:139–150

    Article  PubMed  CAS  Google Scholar 

  • Tonini M, Fiori E, Balestra B, Spelta V, D’Agostino G, Di Nucci A, Brecha NC, Sternini C (1998) Endomorphin-1 and endomorphin-2 activate μ-opioid receptors in myenteric neurons of the guinea-pig small intestine. Naunyn-Schmiedeberg’s Arch Pharmacol 358:686–689

    Article  CAS  Google Scholar 

  • Valeri P, Morrone LA, Romanelli L, Amico MC (1995) Acute withdrawal after bremazocine and the interaction between μ- and κ-opioid receptors in isolated gut tissues. Br J Pharmacol 114:1206–1210

    PubMed  CAS  Google Scholar 

  • Vanegas G, Ripamonti C, Sbanotto A, De Conno F (1998) Side effects of morphine administration in cancer patients. Cancer Nurs 21:289–297

    Article  PubMed  CAS  Google Scholar 

  • Walsh TD (1990) Prevention of opioid side effects. J Pain Symptom Manage 5:362–367

    Article  PubMed  CAS  Google Scholar 

  • Walsh TD (2000) Pharmacological management of cancer pain. Semin Oncol 27:45–63

    PubMed  Google Scholar 

  • Wang D, Bilsky EJ, Porecca F, Sadée W (1994) Constitutive μ opioid receptor activation as a regulatory mechanism underlying narcotic tolerance and dependence. Life Sci 54:339–350

    Google Scholar 

  • Werner JA, Cerbone LR, Frank SA, Ward JA, Labib P, Tharp-Taylor RW, Ryan CR (1996) Synthesis of trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonists: application of the cis-thermal elimination of carbonates to alkaloid synthesis. J Org Chem 61:587–597

    Article  PubMed  CAS  Google Scholar 

  • Wolff BG, Michelassi F, Gerkin T, Techner L, Gabriel K, Du W, Wallin BA (2004) Alvimopan, a novel, peripherally acting μ opioid antagonist. Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. Ann Surg 240:728–735

    PubMed  Google Scholar 

  • Yuan CS (2004) Clinical status of methylnaltrexone, a new agent to prevent and manage opioid-induced side effects. J Support Oncol 2:111–122

    PubMed  CAS  Google Scholar 

  • Yuan CS, Foss JF, Moss J (1995) Effects of methylnaltrexone on morphine-induced inhibition of contraction in isolated guinea-pig ileum and human tissue. Eur J Pharmacol 276:107–111

    Article  PubMed  CAS  Google Scholar 

  • Yuan CS, Foss JF, O’Connor M, Osinski J, Roizen MF, Moss J (1999) Effects of intravenous methylnaltrexone on opioid-induced gut motility and transit time changes in subjects receiving chronic methadone therapy: a pilot study. Pain 83:631–635

    Article  PubMed  CAS  Google Scholar 

  • Yuan CS, Foss JF, O’Connor M, Osinski J, Karrison T, Moss J, Roizen M (2000) Methylnaltrexone for reversal of constipation due to chronic methadone use: a randomized controlled trial. JAMA 283:367–372

    Article  PubMed  CAS  Google Scholar 

  • Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the μ-opiate receptor. Nature 386:499–502

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman DM, Gidda JS, Cantrell BE, Schoepp DD, Johnson BG, Leander JD (1994) Discovery of a potent, peripherally selective trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonist for the treatment of gastrointestinal motility disorders. J Med Chem 37:2262–2265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. William Martin and Dr. Jan Smith for their comments on the manuscript during its preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Beattie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beattie, D.T., Cheruvu, M., Mai, N. et al. The in vitro pharmacology of the peripherally restricted opioid receptor antagonists, alvimopan, ADL 08-0011 and methylnaltrexone. Naunyn-Schmied Arch Pharmacol 375, 205–220 (2007). https://doi.org/10.1007/s00210-007-0146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0146-x

Keywords

Navigation