Log in

On (Fejér-)Riesz type inequalities, Hardy–Littlewood type theorems and smooth moduli

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The purpose of this paper is to develop some methods to study (Fejér-)Riesz type inequalities, Hardy–Littlewood type theorems and smooth moduli of holomorphic, pluriharmonic and harmonic functions in high-dimensional cases. Initially, we prove some sharp Riesz type inequalities of pluriharmonic functions on bounded symmetric domains. The obtained results extend the main results in Kalaj (Trans Am Math. Soc. 372:4031–4051, 2019). Next, some Hardy–Littlewood type theorems of holomorphic and pluriharmonic functions on John domains are established, which give analogies and extensions of a result in Hardy and Littlewood (J Reine Angew Math 167;405–423, 1931). Furthermore, we establish a Fejér–Riesz type inequality on pluriharmonic functions in the Euclidean unit ball in \(\mathbb {C}^n\), which extends the main result in Melentijević and Bo\(\breve{z}\)in (Potential Anal 54:575–580, 2021). Additionally, we also discuss the Hardy–Littlewood type theorems and smooth moduli of holomorphic, pluriharmonic and harmonic functions. Consequently, we improve and extend the corresponding results in Dyakonov (Acta Math 178:143–167, 1997), Hardy and Littlewood (Math Z 34:403–439, 1932), Dyakonov (Adv Math 187:146–172, 2004) and Pavlović (Rev Mat Iberoam 23:831–845, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer Verlag, New York (2000)

    MATH  Google Scholar 

  2. Beckenbach, E.F.: On a theorem of Fejér and Riesz. J. Lond. Math. Soc. 13, 82–86 (1938)

    MATH  Google Scholar 

  3. Bochner, S.: Classes of holomorphic functions of several complex variables in circular domains. Proc. Nat. Acad. Sci. USA 46, 721–723 (1960)

    MATH  Google Scholar 

  4. Chen, S.L., Hamada, H.: Some sharp Schwarz–Pick type estimates and their applications of harmonic and pluriharmonic functions. J. Funct. Anal. 282, 109254 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Chen, S.L., Hamada, H., Ponnusamy, S., Vijayakumar, R.: Schwarz type lemmas and their applications in Banach spaces. J. Anal. Math. (2023). https://doi.org/10.1007/s11854-023-0293-0

    Article  Google Scholar 

  6. Chen, S.L., Li, P., Wang, X.T.: Schwarz-type lemma, Landau-type theorem, and Lipschitz-type space of solutions to inhomogeneous biharmonic equations. J. Geom. Anal. 29, 2469–2491 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Chen, S.L., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type, and Lipschitz-type spaces. Math. Z. 279, 163–183 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Duren, P.: Theory of \(H^{p}\) Spaces, 2nd edn. Dover, Mineola, NY (2000)

    Google Scholar 

  9. Duren, P., Hamada, H., Kohr, G.: Two-point distortion theorems for harmonic and pluriharmonic map**s. Trans. Am. Math. Soc. 363, 6197–6218 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Dyakonov, K.M.: Equivalent norms on Lipschitz-type spaces of holomorphic functions. Acta Math. 178, 143–167 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Dyakonov, K.M.: Holomorphic functions and quasiconformal map**s with smooth moduli. Adv. Math. 187, 146–172 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Dyakonov, K.M.: Strong Hard–Littlewood theorems for analytic functions and map**s of finite distortion. Math. Z. 249, 597–611 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Fefferman, C., Lonescu, A., Tao, T., Wainger, S.: Analysis and applications: the mathematical work of Elias Stein. Bull. Am. Math. Soc. New Ser. 57, 523–594 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    MathSciNet  MATH  Google Scholar 

  15. Fejér, L., Riesz, F.: Über einige funktionen theoretische Ungleichungen. Math. Z. 11, 305–314 (1921)

    MathSciNet  MATH  Google Scholar 

  16. Frazer, H.: On the moduli of regular functions. Proc. Lond. Math. Soc. 36, 532–546 (1934)

    MathSciNet  MATH  Google Scholar 

  17. Gehring, F.W., Martio, O.: Lipschitz-classes and quasiconformal map**s. Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 203–219 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Hahn, K.T., Mitchell, J.: \(H^{p}\) spaces on bounded symmetric domains. Trans. Am. Math. Soc. 146, 521–531 (1969)

    MATH  Google Scholar 

  19. Hardy, G.H., Littlewood, J.E.: Some properties of conjugate functions. J. Reine Angew. Math. 167, 405–423 (1931)

    MathSciNet  MATH  Google Scholar 

  20. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals II. Math. Z. 34, 403–439 (1932)

    MathSciNet  MATH  Google Scholar 

  21. Hasumi, M., Mochizuki, N.: Fejér–Riesz inequality for holomorphic functions of several complex variables. Tohoku Math. J. 33, 493–501 (1981)

    MathSciNet  MATH  Google Scholar 

  22. Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Transl. Math. Monographs, vol. 6. Amer. Math. Soc, Providence, RI, Oxford (1963)

    Google Scholar 

  23. Huber, A.: On an inequality of Fejér and Riesz. Ann. Math. 63, 572–587 (1956)

    MathSciNet  MATH  Google Scholar 

  24. Iwaniec, T., Nolder, C.A.: Hardy–Littlewood inequality for quasiregular map**s in certain domains in \(\textbf{R} ^n\). Ann. Acad. Sci. Fenn. Ser. A I Math. 10, 267–282 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Kalaj, D.: On Riesz type inequalities for harmonic map**s on the unit disk. Trans. Am. Math. Soc. 372, 4031–4051 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Kalaj, D., Vuorinen, M.: On harmonic functions and the Schwarz lemma. Proc. Am. Math. Soc. 140, 161–165 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Kayumov, I., Ponnusamy, S., Kaliraj, A.: Riesz–Fejér inequalities for harmonic functions. Potential Anal. 52, 105–113 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Khalfallah, A., Purtić, B., Mateljević, M.: Schwarz–Pick lemma for harmonic and hyperbolic harmonic functions. Result. Math. 77, 14 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Korányi, A., Wolf, J.A.: Realization of Hermitian symmetric spaces as generalized half-planes. Ann. Math. 81, 265–288 (1965)

    MathSciNet  MATH  Google Scholar 

  30. Krantz, S.G.: Lipschitz spaces, smoothness of functions, and approximation theory. Expo. Math. 3, 193–260 (1983)

    MathSciNet  MATH  Google Scholar 

  31. Lappalainen, V.: Lip\(_{h}\)-extension domains. Ann. Acad. Sci. Fenn. Ser. Math. A I Dissert. 56 (1985)

  32. Loos, O.: Bounded Symmetric Domains and Jordan Pairs. University of California, Irvine (1977)

    Google Scholar 

  33. Mateljević, M.: Quasiconformal and quasiregular harmonic analogues of Koebe’s theorem and applications. Ann. Acad. Sci. Fenn. Math. 32, 301–315 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Melentijević, P.: Hollenbeck–Verbitsky conjecture on best constant inequalities for analytic and co-analytic projections. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02639-1

    Article  Google Scholar 

  35. Melentijević, P., Bo\(\breve{z}\)in, V.: Sharp Riesz–Fejér inequality for harmonic Hardy spaces. Potential Anal. 54, 575–580 (2021)

  36. Mitchell, J.: Lipschitz spaces of holomorphic and pluriharmonic functions on bounded symmetric domains in \(\mathbb{C} ^{N}~(N>1)\). Ann. Polon. Math. 34, 131–141 (1981)

    MathSciNet  MATH  Google Scholar 

  37. Nolder, C.A.: Hardy–Littlewood theorems for solutions of elliptic equations in divergence form. Indiana Univ. Math. J. 40, 149–160 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Pavlović, M.: On K.M. Dyakonov’s paper: equivalent norms on Lipschitz-type spaces of holomorphic functions. Acta Math. 183, 141–143 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Pavlović, M.: Lipschitz conditions on the modulus of a harmonic function. Rev. Mat. Iberoam. 23, 831–845 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Pichorides, S.K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Stud. Math. 44, 165–179 (1972)

    MathSciNet  MATH  Google Scholar 

  41. Privalov, I.I.: Sur les fonctions conjugees. Bull. Soc. Math. France 44, 100–103 (1916)

    MathSciNet  Google Scholar 

  42. Ramey, W., Ullrich, D.: The pointwise Fatou theorem and its converse for positive pluriharmonic functions. Duke Math. J. 49, 655–675 (1982)

    MathSciNet  MATH  Google Scholar 

  43. Rudin, W.: Pluriharmonic functions in balls. Proc. Am. Math. Soc. 62, 44–46 (1977)

    MathSciNet  MATH  Google Scholar 

  44. Rudin, W.: Function theory in \(\mathbb{C} ^{n}\). Springer-Verlag, New York (1980)

    MATH  Google Scholar 

  45. Shi, J.H.: On the rate of growth of the means \(M_{p}\) of holomorphic and pluriharmonic functions on bounded symmetric domains of \(\mathbb{C} ^{n}\). J. Math. Anal. Appl. 126, 161–175 (1987)

    MathSciNet  Google Scholar 

  46. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of \(H^{p}\)-spaces. Acta Math. 103, 25–62 (1960)

    MathSciNet  MATH  Google Scholar 

  47. Verbitsky, I. E.: Estimate of the norm of a function in a Hardy space in terms of the norms of its real and imaginary parts. Mat. Issled. 54, 16–20 (1980) (Russian); Am. Math. Soc. Transl. Ser. 124, 11–12 (1984) (English translation)

  48. Vladimirov, V.S.: Methods of the Theory of Functions of Several Complex Variables. M. I. T. Press, Cambridge, MA (1966). (in Russian)

    Google Scholar 

  49. Wolf, J.A., Korányi, A.: Generalized Cayley transformations of bounded symmetric domains. Am. J. Math. 87, 899–939 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for many valuable suggestions. The research of the first author was partly supported by the National Science Foundation of China (grant no. 12071116), the Hunan Provincial Natural Science Foundation of China (No. 2022JJ10001), the Key Projects of Hunan Provincial Department of Education (grant no. 21A0429), the Double First-Class University Project of Hunan Province (**angjiaotong [2018]469), the Science and Technology Plan Project of Hunan Province (2016TP1020), and the Discipline Special Research Projects of Hengyang Normal University (XKZX21002); The research of the second author was partly supported by JSPS KAKENHI Grant Number JP22K03363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Hamada, H. On (Fejér-)Riesz type inequalities, Hardy–Littlewood type theorems and smooth moduli. Math. Z. 305, 64 (2023). https://doi.org/10.1007/s00209-023-03392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03392-6

Keywords

Mathematics Subject Classification

Navigation