Log in

The nonlocal isoperimetric problem for polygons: Hardy–Littlewood and Riesz inequalities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given a non-increasing and radially symmetric kernel in \(L ^ 1 _{\textrm{loc}} (\mathbb {R}^ 2 ; \mathbb {R}_+)\), we investigate counterparts of the classical Hardy–Littlewood and Riesz inequalities when the class of admissible domains is the family of polygons with given area and N sides. The latter corresponds to study the polygonal isoperimetric problem in nonlocal version. We prove that, for every \(N \ge 3\), the regular N-gon is optimal for Hardy–Littlewood inequality. Things go differently for Riesz inequality: while for \(N = 3\) and \(N = 4\) it is known that the regular triangle and the square are optimal, for \(N\ge 5\) we prove that symmetry or symmetry breaking may occur (i.e. the regular N-gon may be optimal or not), depending on the value of N and on the choice of the kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The construction is taken from the MathWorld page https://mathworld.wolfram.com/GrahamsBiggestLittleHexagon.html.

References

  1. Audet, C.: Maximal area of equilateral small polygons. Am. Math. Mon. 124(2), 175–178 (2017)

    MathSciNet  Google Scholar 

  2. Audet, C., Hansen, P., Messine, F., **ong, J.: The largest small octagon. J. Combin. Theory Ser. A 98(1), 46–59 (2002)

    MathSciNet  Google Scholar 

  3. Audet, C., Hansen, P., Svrtan, D.: Using symbolic calculations to determine largest small polygons. J. Glob. Optim. 81(1), 261–268 (2021)

    MathSciNet  Google Scholar 

  4. Bieri, H.: Ungelöste Probleme: Zweiter Nachtrag zu Nr 12. Elem. Math. 16, 105–106 (1961)

    Google Scholar 

  5. Bogosel, B., Bucur, D.: On the Polygonal Faber–Krahn Inequality. ar**v:2203.16409

  6. Bonacini, M., Cristoferi, R., Topaloglu, I.: Riesz-type inequalities and overdetermined problems for triangles and quadrilaterals. J. Geom. Anal. 32(2, Paper No. 48), 31 (2022)

    MathSciNet  Google Scholar 

  7. Bourgain, J., Brezis, H., Mironescu, P.: Another Look at Sobolev Spaces. Optimal Control and Partial Differential Equations, pp. 439–455. IOS, Amsterdam (2001)

    Google Scholar 

  8. Brascamp, H.J., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)

    MathSciNet  Google Scholar 

  9. Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and their Applications, vol. 65. Birkhäuser Boston Inc., Boston (2005)

    Google Scholar 

  10. Bucur, D., Fragalà, I.: A Faber–Krahn inequality for the Cheeger constant of \(N\)-gons. J. Geom. Anal. 26(1), 88–117 (2016)

    MathSciNet  Google Scholar 

  11. Bucur, D., Fragalà, I.: Symmetry results for variational energies on convex polygons. ESAIM Control Optim. Calc. Var. 27(Paper No. 3), 16 (2021)

    MathSciNet  Google Scholar 

  12. Bucur, D., Fragalà, I.: Rigidity for measurable sets. Adv. Math. 414, 25 (2023)

    MathSciNet  Google Scholar 

  13. Bucur, D., Fragalà, I., Velichkov, B., Verzini, G.: On the honeycomb conjecture for a class of minimal convex partitions. Trans. Am. Math. Soc. 370(10), 7149–7179 (2018)

    MathSciNet  Google Scholar 

  14. Caffarelli, L.A., Lin, F.H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1–2), 5–18 (2007)

    MathSciNet  Google Scholar 

  15. Caffarelli, L.A., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61(1), 1–17 (2008)

    MathSciNet  Google Scholar 

  16. Caffarelli, L.A., Roquejoffre, J.M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63(9), 1111–1144 (2010)

    MathSciNet  Google Scholar 

  17. Carroll, T.: Old and new on the bass note, the torsion function and the hyperbolic metric. Irish Math. Soc. Bull. 47, 41–65 (2001)

    MathSciNet  Google Scholar 

  18. Cesaroni, A., Dipierro, S., Novaga, M., Valdinoci, E.: Minimizers for nonlocal perimeters of Minkowski type. Calc. Var. Partial Differ. Equ. 57(no. 2, Paper No. 64), 40 (2018)

    MathSciNet  Google Scholar 

  19. Cesaroni, A., Novaga, M.: The isoperimetric problem for nonlocal perimeters. Discret. Contin. Dyn. Syst. Ser. S 11(3), 425–440 (2018)

    MathSciNet  Google Scholar 

  20. De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 5, 33–44 (1958)

    MathSciNet  Google Scholar 

  21. Fejes Tóth, G.: On the intersection of a convex disc and a polygon. Acta Math. Acad. Sci. Hungar. 29(1–2), 149–153 (1977)

    MathSciNet  Google Scholar 

  22. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336(1), 441–507 (2015)

    MathSciNet  Google Scholar 

  23. Foster, J., Szabo, T.: Diameter graphs of polygons and the proof of a conjecture of Graham. J. Combin. Theory Ser. A 114(8), 1515–1525 (2007)

    MathSciNet  Google Scholar 

  24. Fragalà, I., Velichkov, B.: Serrin-type theorems for triangles. Proc. Am. Math. Soc. 147(4), 1615–1626 (2019)

    MathSciNet  Google Scholar 

  25. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 20, 21 (2008)

    Google Scholar 

  26. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430 (2008)

    MathSciNet  Google Scholar 

  27. Graham, R.L.: The largest small hexagon. J. Combin. Theory Ser. A 18, 165–170 (1975)

    MathSciNet  Google Scholar 

  28. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). (Reprint of the 1952 edition)

    Google Scholar 

  29. Henrion, D., Messine, F.: Finding largest small polygons with GloptiPoly. J. Glob. Optim. 56(3), 1017–1028 (2013)

    MathSciNet  Google Scholar 

  30. Henrot, A.: Shape Optimization and Spectral Theory. De Gruyter, Berlin (2017)

    Google Scholar 

  31. Henrot, A., Pierre, M.: Shape Variation and Optimization, EMS Tracts in Mathematics, vol. 28. European Mathematical Society (EMS), Zürich (2018)

    Google Scholar 

  32. Laugesen, R.S.: Minimizing capacity among linear images of rotationally invariant conductors. Anal. Math. Phys. 12(no. 1, Paper No. 21), 25 (2022)

    MathSciNet  Google Scholar 

  33. Laurain, A.: Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains. J. Math. Pures Appl. (9) 134, 328–368 (2020)

    MathSciNet  Google Scholar 

  34. Lombardini, L.: Fractional perimeters from a fractal perspective. Adv. Nonlinear Stud. 19(1), 165–196 (2019)

    MathSciNet  Google Scholar 

  35. Ludwig, M.: Anisotropic fractional perimeters. J. Differ. Geom. 96(1), 77–93 (2014)

    MathSciNet  Google Scholar 

  36. Mazón, J.M., Rossi, J.D., Toledo, J.J.: Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets. Frontiers in Mathematics. Springer, Cham (2019)

    Google Scholar 

  37. Morgan, F., Bolton, R.: Hexagonal economic regions solve the location problem. Am. Math. Mon. 109(2), 165–172 (2002)

    MathSciNet  Google Scholar 

  38. Mossinghoff, M.J.: A \$1 problem. Am. Math. Mon. 113(5), 385–402 (2006)

    Google Scholar 

  39. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, vol. 27. Princeton University Press, Princeton (1951)

    Google Scholar 

  40. Preunkert, M.: A semigroup version of the isoperimetric inequality. Semigroup Forum 68(2), 233–245 (2004)

    MathSciNet  Google Scholar 

  41. Reinhardt, K.: Extremale polygone gegebene Durchmessers. Jahresber. Deutsch. Math.-Verein 31, 251–270 (1922)

    Google Scholar 

  42. Riesz, F.: Sur une inégalité intégrale. J. Lond. Math. Soc. 5(3), 162–168 (1930)

    Google Scholar 

  43. Schäffer, J.J.: Ungelöste Probleme: Nachtrag zu Nr. 12. Elem. Math. 13, 85–86 (1958)

    Google Scholar 

  44. Solynin, A.Y., Zalgaller, V.A.: An isoperimetric inequality for logarithmic capacity of polygons. Ann. Math. (2) 159(1), 277–303 (2004)

    MathSciNet  Google Scholar 

  45. van den Berg, M., Gittins, K.: On the heat content of a polygon. J. Geom. Anal. 26(3), 2231–2264 (2016)

    MathSciNet  Google Scholar 

  46. van den Berg, M., Srisatkunarajah, S.: Heat flow and Brownian motion for a region in \({ R}^2\) with a polygonal boundary. Probab. Theory Relat. Fields 86(1), 41–52 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorin Bucur.

Ethics declarations

Conflict of interest

On behalf of all authors, Dorin Bucur states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogosel, B., Bucur, D. & Fragalà, I. The nonlocal isoperimetric problem for polygons: Hardy–Littlewood and Riesz inequalities. Math. Ann. 389, 1835–1882 (2024). https://doi.org/10.1007/s00208-023-02683-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-023-02683-x

Mathematics Subject Classification

Navigation