Log in

Apparent incompatibility of plasmid pSfrYC4b of Sinorhizobium fredii with two different plasmids in another strain

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sinorhizobium fredii YC4B is a spontaneous mutant derivative of strain YC4 that is unable to nodulate soybeans. The second-largest plasmid of strain YC4B, termed pSfrYC4b (810 kb), was transferred to S. fredii HN01SR, a strain which contains three large indigenous plasmids (pSfrHN01a, pSfrHN01b and pSfrHN01c). Surprisingly, two stable indigenous plasmids (pSfrHN01a and pSfrHN01b) of strain HN01SR were cured simultaneously by the introduction of pSfrYC4b. Furthermore, a novel, unstable plasmid (pHY4) became visible in agarose gels. The electrophoretic mobility of plasmid pHY4 was slower than that shown by the cured plasmids, indicating that the molecular weight of the former is higher than that of plasmids pSfrYC4b and pSfrHN01b. Replication gene repC-like sequences were detected by polymerase chain reaction (PCR) on pSfrHN01a and pSfrYC4b, but not on pSfrHN01b. Sau3AI and PstI restriction patterns of the PCR-amplified repC-like sequences from HN01SR and YC4B were very similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bec-Ferté MP, Krishnan HB, Promé D, Savagnac A, Puppke SG, Promé J-C (1994) Structures of nodulation factors from the nitrogen-fixing soybean symbiont Rhizobium fredii USDA257. Biochemistry 33:11782–11788

    Article  PubMed  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    PubMed  Google Scholar 

  • Beynon JL, Beringer JE, Johnston AWB (1980) Plasmid and host range in Rhizobium leguminosarum and Rhizobium phaseoli. J Gen Microbiol 120:421–429

    Google Scholar 

  • Brewin NJ, DeJong TM, Phillips DA, Johnston AW (1980a) Co-transfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature 288:77–79

    Article  Google Scholar 

  • Brewin NJ, Beringer JE, Buchanen-Wollaston AV, Johnston AW, Hirsch PR (1980b) Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. J Gen Microbiol 116:261–270

    Google Scholar 

  • Brewin NJ, Wood EA, Johnston AWB, Dibb NJ, Hombrecher G (1982) Recombinant nodulation plasmids in Rhizobium leguminosarum. J Gen Microbiol 128:1817–182

    Google Scholar 

  • Brom S, García-de los Santos A, Cervantes RP, Romero D (2000) In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid 44:34–43

    Article  PubMed  Google Scholar 

  • Buendic-Claveria AM, Romero F, Cubo T, Perez-Sllva J, Ruiz-Sainz JE (1989) Inter- and intraspecific transfer of a Rhizobium fredii symbiotic plasmid: expression and incompatibility of symbiotic plasmids. Syst Appl Microbiol 12:210–215

    Google Scholar 

  • Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, García-de-los-Santos A, Dávila G, Brom S (2002) Rhizobium etli CFN42 contains at least three plasmids of the repABC family: a structural and evolutionary analysis. Plasmid 48:104–116

    Article  PubMed  Google Scholar 

  • Chen WL, Zhou JC, Hung QY, Li FD (1995) Diversity of Sym plasmid in Rhizobium fredii strain and plasmid stability and free-living and symbiotic conditions. In: Li FD, et al (eds) Diversity and taxonomy of rhizobia. China Agricultural Scientech, Bei**g, pp 116–125

    Google Scholar 

  • Cubo MT, Buendia-Claveria AM, Beringer JE, Ruiz-Sainz JE (1988) Melanin production by Rhizobium strains. Appl Environ Microbiol 54:1812–1817

    Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmids deoxyribonucleic acid in bacteria. Plasmid 1:584–588

    Article  PubMed  Google Scholar 

  • Engwall KS, Atherly AG (1986) The formation of R-prime deletion mutants and the identification of the symbiotic gene in Rhizobium fredii strain USDA191. Plant Mol Biol 6:41–51

    Article  Google Scholar 

  • Finan TM, Kunkel B, de Vos GF, Signer ER (1986) Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72

    PubMed  Google Scholar 

  • Hooykaas PJJ, van Brussel AAN, Den Dulk-Ras H, Van Slogteren GM, Schilperoort RA (1981) Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium fumefaciers. Nature 291:351–353

    Article  Google Scholar 

  • Hooykaas PJJ, Den Dulk-Ras H, Regensburg-Tuink AJG, van Brussel AAN, Schilperoort RA (1985) Expression of a Rhizobium phaseoli Sym plasmid in R. trifolii and Agrobacterium tumefaciers: incompatibility with a R. trifolii Sym plasmid. Plasmid 14:47–52

    Article  PubMed  Google Scholar 

  • Hynes F, Simon R, Pühler A (1985) The development of plasmid-free strains of Agrobacterium tumefaciers by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtc58. Plasmid 13:99–105

    Article  PubMed  Google Scholar 

  • Hynes MF, Jurgen Q, O’Connell MP, Pühler A (1989) Direct selection for curing and deletion of Rhizobium plasmids using transposon carrying the Bacillus subtilis sacB gene. Gene 78:111–120

    Article  PubMed  Google Scholar 

  • Keyser HH, Bohlool BB, Hu TS, Weber DF (1982) Fast growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632

    Google Scholar 

  • Kinkle BK, Schmidt EL (1991) Transfer of the Pea symbiotic plasmid pJB5JI in nonsterile soil. Appl Environ Microbiol 57:3264–3269

    Google Scholar 

  • Leong SA, Drrta G, Helinsk DR (1982) Heme biosynthesis in Rhizobium: identification of a cloned gene coding for δ-amino levulinic acid synthetase from Rhizobium meliloti. J Biol Chem 257:8724–8730

    PubMed  Google Scholar 

  • Maas R, Saadi S, Maas WK (1989) Properties and incompatibility behavior of minplasmids derived from the bireplicon plasmid pCG86. Mol Gen Genet 218:190–198

    Article  PubMed  Google Scholar 

  • Mavingui P, Flores M, Guo X, Dávila G, Perret X, Broughton WJ, Palacios R (2002) Dynamics of genome architecture in Rhizobium sp. strain NGR234. J Bacteriol 184:171–176

    Article  PubMed  Google Scholar 

  • Mercado-Blanco J, Toro N (1996) Plasmid in Rhizobia: the role of nonsymbiotic plasmids. Mol Plant–Microbe Interact 9:535–545

    Google Scholar 

  • Miao LH, Zhou JC (2003) Sinorhizobium fredii YC4 symbiotic plasmid amplification on nod factor and symbiotic N-fixation. Chin J Appl Ecol 14:1517–1520

    Google Scholar 

  • Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395

    PubMed  Google Scholar 

  • O’Connell M, Dowling D, Neilan J, Simon R, Dunican LK, Duehler A (1984) Plasmid interactions in Rhizobium: incompatibility between symbiotic plasmids In: Veeger C, Newtor WE (eds) Advances in nitrogen fixation research. Nijhoff Junk, The Hagne, p 713

    Google Scholar 

  • O’Connell M, Hynes MF, Puehler A (1987) Incompatibility between a Rhizobium Sym plasmid and a Ri plasmid of Agrobacterium. Plasmid 18:156–163

    Article  PubMed  Google Scholar 

  • Oresnik IJ, Liu SL, Yost CK, Hynes MF (2000) Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability. J Bacteriol 182:3582–3586

    Article  PubMed  Google Scholar 

  • Palmer KM, Turner SL, Yong JPW (2000) Sequence diversity of the plasmid replication gene repC in the Rhizobiaceae. Plasmid 44:209–219

    Article  PubMed  Google Scholar 

  • Quintero V, Miguel A, Cevallos, Dávila G (2002) Asite-specific recombinase (RinQ) is required to exert incompatibility towards the symbiotic plasmid of Rhizobium etli. Mol Microbiol 46:1023–1032

    Article  PubMed  Google Scholar 

  • Ramírez-Romero MA, Bustos P, Girard ML, Rodríguez O, Cevallos MA, Dávilla G (1997) Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli. Microbiology 143:2825–2831

    PubMed  Google Scholar 

  • Romero D, Martínez-Salazar J, Girard L, Brom S, Dávila G, Palacios R, Flores M, Rodríguez C (1995) Discrete amplifiable regions (amplicons) in the symbiotic plasmid of Rhizobium etli CFN42. J Bacteriol 177:973–980

    PubMed  Google Scholar 

  • Rosenberg C, Huguet T (1984) The pAtC58 plasmid of Agrobacterium tumefaciens is not essential for tumor induction. Mol Gen Genet 196:533–536

    Article  Google Scholar 

  • Schofield PR, Glbson AH, Dudman WF, Watson JM (1987) Evidence for genetic exchange and recombination of Rhizobium symbiotic plasmids in soil population. Appl Environ Microbiol 53:2942–2947

    Google Scholar 

  • Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Article  PubMed  Google Scholar 

  • Sivakumaran S, Lockhart PL, Jarvis BW (1997) Identification of soil bacteria expressing a symbiotic plasmid from Rhizobium leguminosarum bv. trofolii. Can J Microbiol 43:167–177

    Google Scholar 

  • SoberÓn N, Venkova-Canova T, Ramírez-Romero MA, Téllez-Sos J,Cevallos MA (2004) Incompatibility and the portioning site of the repABC basic replicon of the symbiotic from Rhizobium etli. Plasmid 51:203–216

    Article  PubMed  Google Scholar 

  • Spaink HP, Aarts A, Stacey G, Bloemberg GV, Lugtenberg BJJ, Kennedy EP (1992) Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant Microbe Interact 5:72–80

    PubMed  Google Scholar 

  • Turner SL, Rigottier-Gois L, Power RS, Amarger N, Yong PW (1996) Diversity of repC plasmid-replication sequences in Rhizobium leguminosarum. Microbiology 142:1705–1713

    PubMed  Google Scholar 

  • Valencia-Morales E, Romero D (2000) Recombination enhancement by replication (RER) in Rhizonbium etli. Genetics 154:971–983

    PubMed  Google Scholar 

  • Zhang XX, Kosier B, Priefer UB (2001) Symbiotic plasmid rearrangement in Rhizobium leguminosarum bv. viciae VF39SM. J Bacteriol 183:2141–2144

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jose E. R. Sainz for review and comments on this manuscript. This work was supported by EC ICA4-2001-10056 RTD project from the European Commission, the Chinese 973 Key Fundainent Research 01CB1089 Project and the Chinese National Natural Science Foundation30470065 Project. We wish to thank Dr. M. C. Laus, MSc, and Dr. W. R. M. Schlaman of Leiden University for help with assaying the Nod factors. We also thank Dr. A. A. N. van Brussel and Prof. Chengcai Zhang for review and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, L., Zhou, K., Zhou, J. et al. Apparent incompatibility of plasmid pSfrYC4b of Sinorhizobium fredii with two different plasmids in another strain. Arch Microbiol 183, 359–367 (2005). https://doi.org/10.1007/s00203-005-0780-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0780-y

Keywords

Navigation