Log in

A fast protection of hybrid AC/DC distribution network based on feature extraction of DWT

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a hybrid distribution network protection scheme based on digital signal processing using discrete wavelet transform and feature extraction. The proposed protection scheme can detect all types of faults in both AC and DC sides taking into consideration the disturbances affecting the system. Wavelet transform is used to decompose the signals into different frequency components (approximate and detailed coefficients); then the feature extraction technique is used to extract the characteristics of a certain coefficient. The extracted features are then used to identify different types of faults in the system. Furthermore, a threshold-based decision-making method is employed for fault detection in both AC and DC sides. Simulation results demonstrate that the proposed protection scheme can accurately detect all types of faults in either in AC or DC systems with high accuracy and low computational burden while eliminating the need for a complex training module that requires a lot of data. Also, the proposed scheme has the advantage of depending on local measurement, so that communication infrastructure is not required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article.

References

  1. Hannun RM, Abdul Razzaq AH (2022) Air pollution resulted from coal, oil and gas firing in thermal power plants and treatment: a review. IOP Conf Ser Earth Environ Sci 1002(1):012008. https://doi.org/10.1088/1755-1315/1002/1/012008

    Article  Google Scholar 

  2. Santos SF, Fitiwi DZ, Cruz MRM, Cabrita CMP, Catalão JPS (2017) Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems. Appl Energy 185:44–55. https://doi.org/10.1016/J.APENERGY.2016.10.053

    Article  Google Scholar 

  3. Ram Ola S, Saraswat A, Goyal SK, Sharma V, Khan B, Mahela OP, Haes Alhelou H, Siano P (2020) Alienation coefficient and wigner distribution function based protection scheme for hybrid power system network with renewable energy penetration. Energies 13(5):1120. https://doi.org/10.3390/EN13051120

    Article  Google Scholar 

  4. Sivarasu SR, Chandira Sekaran E, Karthik P (2015) Development of renewable energy based microgrid project implementations for residential consumers in India: Scope, challenges and possibilities. Renew Sustain Energy Rev 50:256–269. https://doi.org/10.1016/J.RSER.2015.04.118

    Article  Google Scholar 

  5. Elmezain MI, Abd el-Ghany HA, Rashad EM, Ahmed ES (2023) Analysis of hybrid AC/DC distribution network under adverse conditions, pp 1–6, doi: https://doi.org/10.1109/MEPCON55441.2022.10021767

  6. Yang P, Yu M, Wu Q, Wang P, **a Y, Wei W (2020) Decentralized economic operation control for hybrid AC/DC Microgrid. IEEE Trans Sustain Energy 11(3):1898–1910. https://doi.org/10.1109/TSTE.2019.2946227

    Article  Google Scholar 

  7. Sarangi S, Sahu BK, Rout PK (2020) Distributed generation hybrid AC/DC microgrid protection: a critical review on issues, strategies, and future directions. Int J Energy Res 44:3347–3364. https://doi.org/10.1002/er.5128

    Article  Google Scholar 

  8. Yehia DM, Mansour DEA (2018) Modeling and analysis of superconducting fault current limiter for system integration of battery Banks. IEEE Trans Appl Supercond 28(4):1–6. https://doi.org/10.1109/TASC.2018.2814398

    Article  Google Scholar 

  9. Salomonsson D, Söder L, Sannino A (2009) Protection of low-voltage DC microgrids. IEEE Trans Power Deliv 24(3):1045–1053. https://doi.org/10.1109/TPWRD.2009.2016622

    Article  Google Scholar 

  10. Mishra M, Patnaik B, Biswal M, Hasan S, Bansal RC (2022) A systematic review on DC-microgrid protection and grounding techniques: issues, challenges and future perspective. Appl Energy 313:118810. https://doi.org/10.1016/J.APENERGY.2022.118810

    Article  Google Scholar 

  11. Vegunta SC, Higginson MJ, Kenarangui YE, Li GT, Zabel DW, Tasdighi M, Shadman (2021) AC microgrid protection system design challenges—a practical experience. Energies 14(7):2016. https://doi.org/10.3390/EN14072016

    Article  Google Scholar 

  12. Patnaik B, Mishra M, Bansal RC, Jena RK (2020) AC microgrid protection—a review: current and future prospective. Appl Energy 271:115210. https://doi.org/10.1016/J.APENERGY.2020.115210

    Article  Google Scholar 

  13. Karimi H, Shahgholian G, Fani B, Sadeghkhani I, Moazzami M (2019) A protection strategy for inverter-interfaced islanded microgrids with looped configuration. Electr Eng 101(3):1059–1073. https://doi.org/10.1007/S00202-019-00841-6/FIGURES/17

    Article  Google Scholar 

  14. Joshua AM, Vittal KP (2022) Incremental transient power-based protection scheme for a DC microgrid. Electr Eng 104(4):2281–2292. https://doi.org/10.1007/S00202-021-01461-9/METRICS

    Article  Google Scholar 

  15. Ryan DJ, Torresan HD, Bahrani B (2018) A bidirectional series Z-source circuit breaker. IEEE Trans Power Electron 33(9):7609–7621. https://doi.org/10.1109/TPEL.2017.2764903

    Article  Google Scholar 

  16. Awagan G, Koley E, Ghosh S (2021) WT and DT-based protection scheme for hybrid microgrid system. In: 2021 international conference on computer system, information technology, and electrical engineering, COSITE 2021, pp 41–45, doi: https://doi.org/10.1109/COSITE52651.2021.9649518.

  17. Hong YY, Cabatac MTAM (2020) Fault detection, classification, and location by static switch in microgrids using wavelet transform and taguchi-based artificial neural network. IEEE Syst J 14(2):2725–2735. https://doi.org/10.1109/JSYST.2019.2925594

    Article  Google Scholar 

  18. Qi P, Jovanovic S, Lezama J, Schweitzer P (2017) Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks. Electric Power Syst Res 143:130–139. https://doi.org/10.1016/J.EPSR.2016.10.008

    Article  Google Scholar 

  19. Baloch S, Samsani SS, Muhammad MS (2021) fault protection in microgrid using wavelet multiresolution analysis and data mining. IEEE Access 9:86382–86391. https://doi.org/10.1109/ACCESS.2021.3088900

    Article  Google Scholar 

  20. Tajani AHN, Bamshad A, Ghaffarzadeh N (2023) A novel differential protection scheme for AC microgrids based on discrete wavelet transform. Electric Power Syst Res 220:109292. https://doi.org/10.1016/J.EPSR.2023.109292

    Article  Google Scholar 

  21. Gururaja Rao HV, Prabhu N, Mala RC (2020) Wavelet transform-based protection of transmission line incorporating SSSC with energy storage device. Electr Eng 102(3):1593–1604. https://doi.org/10.1007/S00202-020-00978-9/TABLES/10

    Article  Google Scholar 

  22. Naik S, Koley E (2019) Fault detection and classification scheme using KNN for AC/HVDC transmission lines. In: proceedings of the 4th international conference on communication and electronics systems, ICCES 2019, pp 1131–1135, doi: https://doi.org/10.1109/ICCES45898.2019.9002230

  23. Noh CH, Kim CH, Gwon GH, Khan MO, Jamali SZ (2019) Development of protective schemes for hybrid AC/DC low-voltage distribution system. Int J Electr Power Energy Syst 105:521–528. https://doi.org/10.1016/J.IJEPES.2018.08.030

    Article  Google Scholar 

  24. Perez-Molina MJ, Larruskain DM, Eguia P, Valverde Santiago V (2022) Local derivative-based fault detection for HVDC grids. IEEE Trans Ind Appl 58(2):1521–1530. https://doi.org/10.1109/TIA.2021.3138367

    Article  Google Scholar 

  25. Kaisar Rachi MR, Akhter Khan M, Husain I (2020) Current derivative assisted protection coordination system for faster fault isolation in A radial DC microgrid, ECCE 2020 - IEEE energy conversion congress and exposition, pp 1292–1298, doi: https://doi.org/10.1109/ECCE44975.2020.9236126

  26. Nahas EW, Mansour DE, Abd el-Ghany HA, Eissa MM (2020) develo** a smart power-voltage relay (SPV-Relay) with no communication system for DC microgrids. Electric Power Syst Res 187:106432. https://doi.org/10.1016/J.EPSR.2020.106432

    Article  Google Scholar 

  27. Srivastava A, Parida SK (2022) A robust fault detection and location prediction module using support vector machine and gaussian process regression for AC microgrid. IEEE Trans Ind Appl 58(1):930–939. https://doi.org/10.1109/TIA.2021.3129982

    Article  Google Scholar 

  28. Reddy OY, Chatterjee S, Chakraborty AK (2022) Bilayered fault detection and classification scheme for low-voltage DC microgrid with weighted KNN and decision tree. Int J Green Energy 19(11):1149–1159. https://doi.org/10.1080/15435075.2021.1984924

    Article  Google Scholar 

  29. Rameshrao AG, Koley E, Ghosh S (2022) A reliable protection scheme for hybrid microgrid network with battery energy storage system. In: IICPC2T 2022 - 2nd international conference on power, control and computing technologies, proceedings, 2022, doi: https://doi.org/10.1109/ICPC2T53885.2022.9776872

  30. Kumar A, Koley E, Rameshrao AG (2022) An intelligent fault detection and faulty line identification scheme for hybrid microgrid using ensemble of kNN approach. In: ICPC2T 2022 - 2nd international conference on power, control and computing technologies, proceedings, doi: https://doi.org/10.1109/ICPC2T53885.2022.9777035

  31. Bhargav R, Gupta CP, Bhalja BR (2022) Unified impedance-based relaying scheme for the protection of hybrid AC/DC microgrid. IEEE Trans Smart Grid 13(2):913–927. https://doi.org/10.1109/TSG.2021.3129532

    Article  Google Scholar 

  32. Ma J, Liu C, Cheng P, Phadke AG (2022) A novel AC line distance protection scheme for AC/DC hybrid system based on fault component energy equation. Int J Electr Power Energy Syst 134:107393. https://doi.org/10.1016/J.IJEPES.2021.107393

    Article  Google Scholar 

  33. Santos GP, Tsutsumi A, Vieira JCM (2023) Enhanced voltage relay for AC microgrid protection. Electric Power Syst Res 220:109310. https://doi.org/10.1016/J.EPSR.2023.109310

    Article  Google Scholar 

  34. Do Park J, Candelaria J, Ma L, Dunn K (2013) DC ring-bus microgrid fault protection and identification of fault location. IEEE Trans Power Deliv 28(4):2574–2584. https://doi.org/10.1109/TPWRD.2013.2267750

    Article  Google Scholar 

  35. Yan R, Gao RX, Chen X (2014) Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process 96(PART A):1–15. https://doi.org/10.1016/J.SIGPRO.2013.04.015

    Article  Google Scholar 

  36. Mateo C, Talavera JA (2020) Bridging the gap between the short-time Fourier transform (STFT), wavelets, the constant-Q transform and multi-resolution STFT. Signal Image Video Process 14(8):1535–1543. https://doi.org/10.1007/S11760-020-01701-8/FIGURES/9

    Article  Google Scholar 

  37. Stockwell RG (2007) A basis for efficient representation of the S-transform. Digit Signal Process 17(1):371–393. https://doi.org/10.1016/J.DSP.2006.04.006

    Article  Google Scholar 

  38. The Tutorial: S Transform. Accessed from Aug 15, 2023. [Online]. Available: https://www.researchgate.net/publication/228896757_The_Tutorial_S_Transform

  39. Ngui WK, Leong MS, Hee LM, Abdelrhman AM (2013) Wavelet analysis: mother wavelet selection methods. Appl Mech Mater 393:953–958. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.393.953

    Article  Google Scholar 

  40. Jayamaha DKJS, Lidula NWA, Rajapakse AD (2019) Wavelet-multi resolution analysis based ANN architecture for fault detection and localization in DC microgrids. IEEE Access 7:145371–145384. https://doi.org/10.1109/ACCESS.2019.2945397

    Article  Google Scholar 

  41. Polat A (2021) The comprehensive analysis of the determination of wavelet function-level pair for the decomposition and reconstruction of artificial S1 heart signals by using multi-resolution analysis. Biomed Signal Process Control 70:103055. https://doi.org/10.1016/J.BSPC.2021.103055

    Article  Google Scholar 

  42. Wu N, Chen S, **ao J (2018) Wavelet analysis-based expulsion identification in electrode force sensing of resistance spot welding. Weld. World 62(4):729–736. https://doi.org/10.1007/S40194-018-0594-6/FIGURES/6

    Article  MathSciNet  Google Scholar 

  43. Jayamaha DKJS, Lidula NWA, Rajapakse AD (2020) Protection and grounding methods in DC microgrids: comprehensive review and analysis. Renew Sustain Energy Rev 120:109631. https://doi.org/10.1016/J.RSER.2019.109631

    Article  Google Scholar 

  44. Patil C, Thale S, Muchande S, Kadam AH (2017) A novel protection scheme for DC microgrid with hierarchical control. In: 2017 5th IEEE international conference on smart energy grid engineering, SEGE 2017, pp 117–122, doi: https://doi.org/10.1109/SEGE.2017.8052786

  45. Srivastava C, Tripathy M (2021) DC microgrid protection issues and schemes: a critical review. Renew Sustain Energy Rev 151:111546. https://doi.org/10.1016/J.RSER.2021.111546

    Article  Google Scholar 

  46. Nuutinen P, Peltoniemi P, Silventoinen P (2013) Short-circuit protection in a converter-fed low-voltage distribution network. IEEE Trans Power Electron 28(4):1587–1597. https://doi.org/10.1109/TPEL.2012.2213845

    Article  Google Scholar 

  47. Fletcher SDA, Norman PJ, Galloway SJ, Burt GM (2011) Determination of protection system requirements for DC unmanned aerial vehicle electrical power networks for enhanced capability and survivability. IET Electr Syst Transp 1(4):137–147. https://doi.org/10.1049/IET-EST.2010.0070

    Article  Google Scholar 

  48. Beheshtaein S, Cuzner RM, Forouzesh M, Savaghebi M, Guerrero JM (2019) DC microgrid protection: a comprehensive review. IEEE J Emerg Sel Top Power Electron. https://doi.org/10.1109/JESTPE.2019.2904588

    Article  Google Scholar 

  49. Meghwani A, Srivastava SC, Chakrabarti S (2017) A non-unit protection scheme for dc microgrid based on local measurements. IEEE Trans Power Deliv 32(1):172–181. https://doi.org/10.1109/TPWRD.2016.2555844

    Article  Google Scholar 

  50. Mansour DEA, Eissa MM (2019) Dynamic modeling and fault analysis of medium-voltage direct current microgrids, Medium-Voltage Direct Current Grid: Resilient Operation, Control and Protection, pp 127–149, https://doi.org/10.1016/B978-0-12-814560-9.00006-9

  51. Ortiz L, Orizondo R, Águila A, González JW, López GJ, Isaac I (2019) Hybrid AC/DC microgrid test system simulation: grid-connected mode. Heliyon 5(12):e02862. https://doi.org/10.1016/j.heliyon.2019.e02862

    Article  Google Scholar 

  52. Omine E, Hatta H, Ueno T (2019) A proposal of demand response program for suppressing duck-curve’s ramp rate with large penetration of photovoltaic generation systems, In: 2019 IEEE power and energy society innovative smart grid technologies conference, ISGT 2019, https://doi.org/10.1109/ISGT.2019.8791676

  53. Yu JJQ, Hou Y, Lam AYS, Li VOK (2019) Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks. IEEE Trans Smart Grid 10(2):1694–1703. https://doi.org/10.1109/TSG.2017.2776310

    Article  Google Scholar 

  54. Samantaray S, Mishra D, Joos G (2018) A combined wavelet and data-mining based intelligent protection scheme for microgrid. IEEE Trans Smart Grid 7(5):2295–2304. https://doi.org/10.1109/PESGM.2018.8586480

    Article  Google Scholar 

  55. Dehghani M, Niknam T, Ghiasi M, Bayati N, Savaghebi M (2021) Cyber-attack detection in DC microgrids based on deep machine learning and wavelet singular values approach. Electronics 10(16):1914. https://doi.org/10.3390/ELECTRONICS10161914

    Article  Google Scholar 

  56. Beheshtaein S, Cuzner R, Savaghebi M, Guerrero JM (2019) Review on microgrids protection. IET Gener Transm Distrib 13(6):743–759. https://doi.org/10.1049/IET-GTD.2018.5212

    Article  Google Scholar 

  57. Escudero R, Noel J, Elizondo J, Kirtley J (2017) Microgrid fault detection based on wavelet transformation and Park’s vector approach. Electric Power Syst Res 152:401–410. https://doi.org/10.1016/J.EPSR.2017.07.028

    Article  Google Scholar 

  58. Shabani A, Mazlumi K (2020) Evaluation of a communication-assisted overcurrent protection scheme for photovoltaic-based DC microgrid. IEEE Trans Smart Grid 11(1):429–439. https://doi.org/10.1109/TSG.2019.2923769

    Article  Google Scholar 

  59. Shamsoddini M, Vahidi B, Razani R, Mohamed YARI (2020) A novel protection scheme for low voltage DC microgrid using inductance estimation. Int J Electr Power Energy Syst 120:105992. https://doi.org/10.1016/J.IJEPES.2020.105992

    Article  Google Scholar 

  60. Wang T, Monti A (2021) Fault detection and isolation in DC microgrids based on singularity detection in the second derivative of local current measurement. IEEE J Emerg Sel Top Power Electron 9(3):2574–2588. https://doi.org/10.1109/JESTPE.2020.2976833

    Article  Google Scholar 

  61. Dai Z, Liu X, Zhang C, Zhu H (2019) Protection scheme for DC lines in AC/DC hybrid distribution grids with MMCs. In: 2018 international conference on power system technology, POWERCON 2018—Proceedings, pp 2518–2523, doi: https://doi.org/10.1109/POWERCON.2018.8602350

  62. Arunan A, Sirojan T, Ravishankar J, Ambikairajah E (2021) Real-time adaptive differential feature-based protection scheme for isolated microgrids using edge computing. IEEE Syst J 15(1):1318–1328. https://doi.org/10.1109/JSYST.2020.2986577

    Article  Google Scholar 

  63. Cisneros-Saldana JI, Begovic MM (2023) Enhancing microgrid protection: wavelet response analysis for islanded and grid-connected modes, 2023 North American Power Symposium, NAPS 2023, https://doi.org/10.1109/NAPS58826.2023.10318784

  64. Seo HC, Gwon GH, Park KW (2021) Fault section estimation in radial LVDC distribution system using wavelet transform. Energies 24:8486. https://doi.org/10.3390/EN14248486

    Article  Google Scholar 

  65. Seo HC (2022) Development of new protection scheme in DC microgrid using wavelet transform. Energies (Basel) 15(1):283. https://doi.org/10.3390/EN15010283

    Article  Google Scholar 

  66. Rathore B, Mahela OP, Khan B, Padmanaban S (2021) Protection scheme using wavelet-alienation-neural technique for UPFC compensated transmission line. IEEE Access 9:13737–13753. https://doi.org/10.1109/ACCESS.2021.3052315

    Article  Google Scholar 

  67. Jayamaha DKJS, Lidula NWA, Rajapakse AD (2019) Wavelet based artificial neural networks for detection and classification of DC microgrid faults. IEEE Power Energy Soc Gen Meet. https://doi.org/10.1109/PESGM40551.2019.8974108

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: Authors: Mohammed I. Elmezain, Hossam A. Abd el-Ghany, Essam M. Rashad, and Eman S. Ahmed helped in study conception and model design. Mohammed I. Elmezain and Hossam A. Abd el-Ghany helped in data collection, analysis and interpretation of results. In addition, develo** the theoretical formalism, performing the analytic calculations and perform the numerical simulations. Mohammed I. Elmezain helped in draft manuscript preparation. Essam M. Rashad and Eman S. Ahmed verified the analytical methods and supervised the findings of this work. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Mohammed I. Elmezain.

Ethics declarations

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmezain, M.I., Abd el-Ghany, H.A., Rashad, E.M. et al. A fast protection of hybrid AC/DC distribution network based on feature extraction of DWT. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00202-024-02451-3

Keywords

Navigation