Log in

An effective torque-based method for automatic turn fault detection and turn fault severity classification in permanent magnet synchronous motor

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This article presents a novel approach based on the electromechanical torque signal for the inter-turn short-circuit fault (ISCF) detection and the ISCF severity estimation in permanent magnet synchronous motors (PMSMs). The electromechanical torque data have been obtained experimentally in the healthy condition and in three various states of the ISCF at various load rates and at various operating speeds. To extract the features to be used in the ISCF diagnosis, the fast Fourier transform (FFT) implemented to the torque signal. The torque’s second and fourth harmonics were found to be new turn fault features that could be used for ISCF diagnosis. These features were used to train and test the classification algorithms. Four classification algorithms were used to detect ISCF and determine the severity of ISCF: decision trees (DT), artificial neural networks (ANN), K-nearest neighbor (KNN) and support vector machines (SVM). Classification accuracies of 100%, 99.30%, 97.91% and 95.48% were achieved by the ANN, SVM, KNN and DT classifiers, respectively. High accuracy ISCF detection and high accuracy ISCF severity estimation were performed using the developed diagnostic method based on the torque signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C:

The cost parameter

K:

The number of nearest neighbors

TP:

Correct classification

FN:

Incorrect classification

PMSM:

Permanent magnet synchronous motors

ML:

Machine learning

WT:

Wavelet transform

ISCF:

Inter-turn short-circuit fault

ANN:

Artificial neural networks

FFT:

Fast Fourier transform

SVM:

Support vector machines

MCSA:

Machine current signature analysis

DT:

Decision trees

KNN:

K-nearest neighbor

STFT:

Short-time Fourier transform

FEA:

Finite element analysis

1D-LBP:

One-dimensional local binary patterns

RF:

Random forests

VSI:

Voltage source inverter

DAQ:

Data acquisition systems

QDA:

Quadrature discriminant analysis

MFNN:

Multilayer feedforward neural network

MSE:

The mean square error

LDA:

Linear discriminant analysis

References

  1. Zhang J, Xu Z, Wang J et al (2020) Detection and discrimination of incipient stator faults for inverter-fed permanent magnet synchronous machines. IEEE Trans Ind Electron 68:1–1. https://doi.org/10.1109/tie.2020.3009563

    Article  Google Scholar 

  2. Hu R, Wang J, Member S et al (2021) Current-residual-based stator interturn fault detection in permanent magnet machines. IEEE Trans Ind Electron 68:59–69. https://doi.org/10.1109/TIE.2020.2965500

    Article  Google Scholar 

  3. Da Y, Shi X, Krishnamurthy M (2011) Health monitoring, fault diagnosis and failure prognosis techniques for Brushless Permanent Magnet Machines. In: 2011 IEEE vehicle power and propulsion conference. IEEE, pp 1–7

  4. Grubic S, Aller JM, Lu B, Habetler TG (2008) A survey on testing and monitoring methods for stator insulation systems of low-voltage induction machines focusing on turn insulation problems. IEEE Trans Ind Electron 55:4127–4136. https://doi.org/10.1109/TIE.2008.2004665

    Article  Google Scholar 

  5. Gandhi A, Corrigan T, Parsa L (2011) Recent advances in modeling and online detection of stator interturn faults in electrical motors. IEEE Trans Ind Electron 58:1564–1575. https://doi.org/10.1109/TIE.2010.2089937

    Article  Google Scholar 

  6. Lale T, Gümüş B (2021) A new approach based on electromechanical torque for detection of inter-turn fault in permanent magnet synchronous motor. Electr Power Compon Syst 49:1499–1511. https://doi.org/10.1080/15325008.2022.2133193

    Article  Google Scholar 

  7. Leboeuf N, Boileau T, Nahid-mobarakeh B et al (2011) Real-time detection of interturn faults in pm drives using Back-EMF estimation and residual analysis. EEE Trans Ind Appl 47:2402–2412. https://doi.org/10.1109/TIA.2011.2168929

    Article  Google Scholar 

  8. Da Y, Shi X, Krishnamurthy M (2013) A new approach to fault diagnostics for permanent magnet synchronous machines using electromagnetic signature analysis. IEEE Trans Power Electron 28:4104–4112. https://doi.org/10.1109/TPEL.2012.2227808

    Article  Google Scholar 

  9. Haddad RZ, Lopez CA, Foster SN, Strangas EG (2017) A voltage-based approach for fault detection and separation in permanent magnet synchronous machines. IEEE Trans Ind Appl 53:5305–5314. https://doi.org/10.1109/TIA.2017.2726072

    Article  Google Scholar 

  10. Kim KH (2011) Simple online fault detecting scheme for short-circuited turn in a PMSM through current harmonic monitoring. IEEE Trans Ind Electron 58:2565–2568. https://doi.org/10.1109/TIE.2010.2060463

    Article  Google Scholar 

  11. Eftekhari M, Moallem M, Sadri S, Hsieh MF (2014) Online detection of induction motor’s stator winding short-circuit faults. IEEE Syst J 8:1272–1282. https://doi.org/10.1109/JSYST.2013.2288172

    Article  Google Scholar 

  12. Ebrahimi BM, Faiz J (2010) Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring. IEEE Trans Power Electron 25:2673–2682. https://doi.org/10.1109/TPEL.2010.2050496

    Article  Google Scholar 

  13. Saavedra H, Urresty J-C, Riba J-R, Romeral L (2014) Detection of interturn faults in PMSMs with different winding configurations. Energy Convers Manag 79:534–542. https://doi.org/10.1016/j.enconman.2013.12.059

    Article  Google Scholar 

  14. Zanardelli WG, Strangas EG, Aviyente S (2007) Identification of intermittent electrical and mechanical faults in permanent-magnet AC drives based on time-frequency analysis. IEEE Trans Ind Appl 43:971–980. https://doi.org/10.1109/TIA.2007.900446

    Article  Google Scholar 

  15. Ruiz J-RR, Rosero JA, Espinosa AG, Romeral L (2009) Detection of demagnetization faults in permanent-magnet synchronous motors under nonstationary conditions. IEEE Trans Magn 45:2961–2969. https://doi.org/10.1109/TMAG.2009.2015942

    Article  Google Scholar 

  16. Wang C, Liu X, Chen Z (2014) Incipient stator insulation fault detection of permanent magnet synchronous wind generators based on Hilbert–Huang transformation. IEEE Trans Magn 50:20–23. https://doi.org/10.1109/TMAG.2014.2318207

    Article  Google Scholar 

  17. Rosero JA, Romeral L, Ortega JA, Rosero E (2009) Short-circuit detection by means of empirical mode decomposition and Wigner–Ville distribution for PMSM running under dynamic condition. IEEE Trans Ind Electron 56:4534–4547. https://doi.org/10.1109/TIE.2008.2011580

    Article  Google Scholar 

  18. Cira F, Arkan M, Gumus B (2016) Detection of stator winding inter-turn short circuit faults in permanent magnet synchronous motors and automatic classification of fault severity via a pattern recognition system. J Electr Eng Technol 11:416–424. https://doi.org/10.5370/JEET.2016.11.2.416

    Article  Google Scholar 

  19. Urresty JC, Riba JR, Romeral L (2012) Application of the zero-sequence voltage component to detect stator winding inter-turn faults in PMSMs. Electr Power Syst Res 89:38–44. https://doi.org/10.1016/j.epsr.2012.02.012

    Article  Google Scholar 

  20. Baruti KH, Li C, Erturk F, Akin B (2023) Online stator inter-turn short circuit estimation and fault management in permanent magnet motors. IEEE Trans Energy Convers 38:1016–1027. https://doi.org/10.1109/TEC.2022.3220544

    Article  Google Scholar 

  21. Wang B, Wang J, Griffo A, Sen B (2018) Stator turn fault detection by second harmonic in instantaneous power for a triple-redundant fault-tolerant PM drive. IEEE Trans Ind Electron 65:7279–7289. https://doi.org/10.1109/TIE.2018.2793188

    Article  Google Scholar 

  22. Cruz SMA, Marques Cardoso AJ (2001) Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended park’s vector approach. IEEE Trans Ind Appl 37:1227–1233. https://doi.org/10.1109/28.952496

    Article  Google Scholar 

  23. Jeong H, Moon S, Kim SW (2017) An Early stage interturn fault diagnosis of PMSMs by using negative-sequence components. IEEE Trans Ind Electron 64:5701–5708. https://doi.org/10.1109/TIE.2017.2677355

    Article  Google Scholar 

  24. Yang Z, Chen Y (2021) Interturn short-circuit fault detection of a five-phase permanent magnet synchronous motor. Energies 14:434. https://doi.org/10.3390/en14020434

    Article  Google Scholar 

  25. Qi Y, Bostanci E, Gurusamy V, Akin B (2018) A comprehensive analysis of short-circuit current behavior in PMSM interturn short-circuit faults. IEEE Trans Power Electron 33:10784–10793. https://doi.org/10.1109/TPEL.2018.2809668

    Article  Google Scholar 

  26. Cui R, Fan Y, Li C (2018) On-line inter-turn short-circuit fault diagnosis and torque ripple minimization control strategy based on OW five-phase BFTHE-IPM. IEEE Trans Energy Convers 33:2200–2209. https://doi.org/10.1109/TEC.2018.2851615

    Article  Google Scholar 

  27. Hang J, Member S, Zhang J et al (2015) Online interturn fault diagnosis of permanent magnet synchronous machine using zero-sequence components. IEEE Trans Power Electron 30:6731–6741. https://doi.org/10.1109/TPEL.2015.2388493

    Article  Google Scholar 

  28. Mazzoletti MA, Bossio GR, De Angelo CH, Espinoza-Trejo DR (2017) A model-based strategy for interturn short-circuit fault diagnosis in PMSM. IEEE Trans Ind Electron 64:7218–7228. https://doi.org/10.1109/TIE.2017.2688973

    Article  Google Scholar 

  29. Ganesan S, David PW, Balachandran PK, Samithas D (2021) Intelligent starting current-based fault identification of an induction motor operating under various power quality issues. Energies 14:304. https://doi.org/10.3390/en14020304

    Article  Google Scholar 

  30. Minaz MR (2020) An effective method for detection of stator fault in PMSM with 1D-LBP. ISA Trans 106:283–292. https://doi.org/10.1016/j.isatra.2020.07.013

    Article  Google Scholar 

  31. Maraaba L, Al-Hamouz Z, Abido M (2018) An efficient stator inter-turn fault diagnosis tool for induction motors. Energies. https://doi.org/10.3390/en11030653

    Article  Google Scholar 

  32. Quiroz JC, Mariun N, Mehrjou MR et al (2018) Fault detection of broken rotor bar in LS-PMSM using random forests. Meas J Int Meas Confed 116:273–280. https://doi.org/10.1016/j.measurement.2017.11.004

    Article  Google Scholar 

  33. Mohamed M, Mohamed E, Mohamed AA et al (2020) Detection of inter turn short circuit faults in induction motor using artificial neural network. In: Conference of open innovations association fruction 2020-April, pp 297–304. https://doi.org/10.23919/FRUCT48808.2020.9087535

  34. Skowron M, Orlowska-Kowalska T, Kowalski CT (2023) Diagnosis of stator winding and permanent magnet faults of PMSM drive using shallow neural networks. Electronics 12:1068. https://doi.org/10.3390/electronics12051068

    Article  Google Scholar 

  35. Pietrzak P, Wolkiewicz M (2023) Fault diagnosis of PMSM stator winding based on continuous wavelet transform analysis of stator phase current signal and selected artificial intelligence techniques. Electronics 12:1543. https://doi.org/10.3390/electronics12071543

    Article  Google Scholar 

  36. Parvin F, Faiz J, Qi Y et al (2023) A comprehensive inter-turn fault severity diagnosis method for permanent magnet synchronous motors based on transformer neural networks. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2023.3242773

    Article  Google Scholar 

  37. Esakimuthu Pandarakone S, Mizuno Y, Nakamura H (2019) A comparative study between machine learning algorithm and artificial intelligence neural network in detecting minor bearing fault of induction motors. Energies 12:2105. https://doi.org/10.3390/en12112105

    Article  Google Scholar 

  38. Selvaraj T, Rengaraj R, Venkatakrishnan G et al (2022) Environmental fault diagnosis of solar panels using solar thermal images in multiple convolutional neural networks. Int Trans Electr Energy Syst 2022:1–16. https://doi.org/10.1155/2022/2872925

    Article  Google Scholar 

  39. Mohamed M, Water Q, Company W, Mohamed A (2020) Detection of inter turn short circuit faults in induction motor using artificial neural network

  40. Pandarakone SE, Mizuno Y, Nakamura H (2016) Frequency spectrum investigation and analytical diagnosis method for turn-to-turn short-circuit insulation failure in stator winding of low voltage induction motor. IEEE Trans Dielectr Electr Insul 23:3249–3255. https://doi.org/10.1109/TDEI.2016.006095

    Article  Google Scholar 

  41. Ali MZ, Shabbir MNSK, Liang X et al (2019) Machine learning-based fault diagnosis for single- and multi-faults in induction motors using measured stator currents and vibration signals. IEEE Trans Ind Appl 55:2378–2391. https://doi.org/10.1109/TIA.2019.2895797

    Article  Google Scholar 

  42. Chuang C, Wei Z, Zhifu W, Zhi L (2017) The diagnosis method of stator winding faults in PMSMs based on SOM neural networks. Energy Procedia 105:2295–2301. https://doi.org/10.1016/j.egypro.2017.03.663

    Article  Google Scholar 

  43. Moosavi SS, Djerdir A, Ait-Amirat Y, Khaburi DA (2015) ANN based fault diagnosis of permanent magnet synchronous motor under stator winding shorted turn. Electr Power Syst Res 125:67–82. https://doi.org/10.1016/j.epsr.2015.03.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timur Lale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lale, T., Gümüş, B. An effective torque-based method for automatic turn fault detection and turn fault severity classification in permanent magnet synchronous motor. Electr Eng 106, 2865–2876 (2024). https://doi.org/10.1007/s00202-023-02113-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-02113-w

Keywords

Navigation