Log in

Multi-output AC–AC converter for domestic induction heating

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this study, a new multi-output direct AC–AC converter is proposed. The proposed new converter consists of a combination of half-bridge (HB) and single-switch quasi-resonant (QR) topologies. In the proposed converter, the number of coils can be increased, all coils can be controlled independently, and independent power control can be made. The main problem of multi-output induction heating systems, such as the inability to increase the number of loads and to control the coils independently, has been eliminated with the proposed converter. The control of the converter is easy, cheap, and simple. The theoretical analysis of the proposed circuit is verified experimentally. In simulation and experimental studies, three coils were used at the output of the converter and each coil is designed to transfer 2000 W of power to the output. The proposed converter has been compared in detail with the conventional direct AC–AC converter in the same conditions. The new converter improves the performance and efficiency of induction heating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Tanaka T (1989) A new induction cooking range for heating any kind of metal vessels. IEEE Trans Consum Electron 35(3):635–641. https://doi.org/10.1109/30.44329

    Article  Google Scholar 

  2. Vishnuram P, Ramachandiran G, Ramasamy S, Dayalan S (2020) A comprehensive overview of power converter topologies for induction heating applications. Int Trans Electr Energ Syst. https://doi.org/10.1002/2050-7038.12554

    Article  Google Scholar 

  3. Lucía O, Maussion P, Dede EJ, Burdío JM (2014) Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans Ind Electron 61(5):2509–2520. https://doi.org/10.1109/TIE.2013.2281162

    Article  Google Scholar 

  4. Mishima T, Nakagawa Y, Nakaoka M (2015) A bridgeless BHB ZVS-PWM AC–AC converter for high-frequency induction heating applications. IEEE Trans Ind Appl 51(4):3304–3315. https://doi.org/10.1109/TIA.2015.2409177

    Article  Google Scholar 

  5. Oncu S, Unal K, Tuncer U (2021) Laboratory setup for teaching resonant converters and induction heating. Eng Sci Technol. https://doi.org/10.1016/j.jestch.2021.05.016

    Article  Google Scholar 

  6. Vishnuram P, Ramachandiran G, Babu T, Nastasi B (2021) Induction heating in domestic cooking and industrial melting applications: a systematic review on modelling, converter topologies and control schemes. Energies 14(20):6634

    Article  Google Scholar 

  7. Vishnuram P, Ramachandiran G (2020) Capacitor-less induction heating system with selfresonant bifilar coil. Int J Circ Theor Appl 48(9):1411–1425. https://doi.org/10.1002/cta.2830

    Article  Google Scholar 

  8. Sarnago H, Lucía O, Mediano A, Burdío JM (2014) A class-E direct AC–AC converter with multicycle modulation for induction heating systems. IEEE Trans Ind Electron 61(5):2521–2530. https://doi.org/10.1109/TIE.2013.2281164

    Article  Google Scholar 

  9. Sarnago H, Lucía Ó, Mediano A, Burdío JM (2014) Direct AC–AC resonant boost converter for efficient domestic induction heating applications. IEEE Trans Power Electron 29(3):1128–1139. https://doi.org/10.1109/TPEL.2013.2262154

    Article  Google Scholar 

  10. Park H, Kim M, Jung J, Kim H (2018) Load adaptive modulation method for all-metal induction heating application. IEEE Appl Power Electron Conf Expos 2018:3486–3490. https://doi.org/10.1109/APEC.2018.8341606

    Article  Google Scholar 

  11. Sugimura H, Ahmed T, Orabi M, Lee HW, Nakaoka M (2004) Commercial utility frequency AC to high frequency AC soft switching power conversion circuit with non-smoothing DC link for IH dual packs heater. In: 30th Annual conference of IEEE industrial electronics society IECON 2004, pp 1155–1160. https://doi.org/10.1109/IECON.2004.1431738

  12. Vishnuram P, Ramasamy S (2019) Fuzzy logic-based pulse density modulation scheme for mitigating uncertainties in AC–AC resonant converter aided induction heating system. J Circuits Syst Comput 58:66. https://doi.org/10.1142/S0218126619500300

    Article  Google Scholar 

  13. Sarnago H, Lucia O, Burdío JM 2010 Multiple-output ZCS resonant inverter for multi-coil induction heating appliances. In: IEEE applied power electronics conference and exposition APEC2017, pp 2234–2238. https://doi.org/10.1109/APEC.2017.7931010

  14. Forest F, Laboure E, Costa F, Gaspard JY (2000) Principle of a multi-load/single converter system for low power induction heating. IEEE Trans Power Electron 15(2):223–230. https://doi.org/10.1109/63.838094

    Article  Google Scholar 

  15. Lucia O, Carretero C, Palacios D, Valeau D, Burdío JM (2011) Configurable snubber network for efficiency optimisation of resonant converters applied to multi-load induction heating. Electron Lett 47(17):989. https://doi.org/10.1049/el.2011.1711

    Article  Google Scholar 

  16. Sugimura H, Mun SP, Kwon SK, Mishima T, Nakaoka M (2008) Direct AC–AC resonant converter using one-chip reverse blocking IGBT-based bidirectional switches for HF induction heaters. In: IEEE international symposium on industrial electronics, pp 406–412. https://doi.org/10.1109/ISIE.2008.4677043

  17. Huang MS, Liao CC, Li ZF, Shih ZR, Hsueh HW (2021) Quantitative design and implementation of an induction cooker for a copper pan. IEEE Access 9:5105–5118. https://doi.org/10.1109/ACCESS.2020.3046713

    Article  Google Scholar 

  18. Jeong SH, ** JI, Park HP et al (2022) Enhanced load adaptive modulation of induction heating series resonant inverters to heat various-material vessels. J Power Electron 22:1020–1032. https://doi.org/10.1007/s43236-022-00409-x

    Article  Google Scholar 

  19. Han W, Chau KT, Liu W, Tian X, Wang H (2021) A dual-resonant topology-reconfigurable inverter for all-metal induction heating. IEEE J Emerg Sel Top Power Electron 66:21

    Google Scholar 

  20. Ramalingam SR, Boopthi CS, Ramasamy S, Ahsan M, Haider J (2021) Induction heating for variably sized ferrous and non-ferrous materials through load modulation. Energies 14:8354. https://doi.org/10.3390/en14248354

    Article  Google Scholar 

  21. ** J, Kim M, Han J et al (2020) Input voltage selection method of half-bridge series resonant inverters for all-metal induction heating applications using high turn-numbered coils. J Power Electron 20:1629–1637. https://doi.org/10.1007/s43236-020-00147-y

    Article  Google Scholar 

  22. Jang E, Park SM, Joo D et al (2019) Analysis and comparison of topological configurations for all-metal induction cookers. J Electr Eng Technol 14:2399–2408. https://doi.org/10.1007/s42835-019-00292-w

    Article  Google Scholar 

  23. Han W, Chau KT, Jiang C, Liu W (2018) All-metal domestic induction heating using single-frequency double-layer coils. IEEE Trans Magn 54(11):1–5. https://doi.org/10.1109/TMAG.2018.2846548

    Article  Google Scholar 

  24. Sarnago H, Lucía O, Mediano A, Burdío JM (2014) Efficient and cost-effective ZCS direct AC–AC resonant converter for induction heating. IEEE Trans Ind Electron 61(5):2546–2555. https://doi.org/10.1109/TIE.2013.2262752

    Article  Google Scholar 

  25. Sarnago H, Lucía Ó, Mediano A, Burdío JM (2013) Class-D/DE dual-mode-operation resonant converter for improved-efficiency domestic induction heating system. IEEE Trans Power Electron 28(3):1274–1285. https://doi.org/10.1109/TPEL.2012.2206405

    Article  Google Scholar 

  26. Saha B, Kim R (2014) High power density series resonant inverter using an auxiliary switched capacitor cell for induction heating applications. IEEE Trans Power Electron 29(4):1909–1918. https://doi.org/10.1109/TPEL.2013.2265984

    Article  Google Scholar 

  27. Ahmed NA, Nakaoka M (2006) Boost-half-bridge edge resonant soft switching PWM high-frequency inverter for consumer induction heating appliances. IEE Proc Electr Power Appl 153(6):932–938. https://doi.org/10.1049/ip-epa:20060086

    Article  Google Scholar 

  28. Mishima T, Takami C, Nakaoka M (2014) A new current phasor-controlled ZVS twin half-bridge high-frequency resonant inverter for induction heating. IEEE Trans Ind Electron 61(5):2531–2545. https://doi.org/10.1109/TIE.2013.2274420

    Article  Google Scholar 

  29. Sarnago H, Mediano A, Lucia Ó (2012) High efficiency AC–AC power electronic converter applied to domestic induction heating. IEEE Trans Power Electron 27(8):3676–3684. https://doi.org/10.1109/TPEL.2012.2185067

    Article  Google Scholar 

  30. Forest F, Faucher S, Gaspard J, Montloup D, Huselstein J, Joubert C (2007) Frequency-synchronized resonant converters for the supply of multiwinding coils in induction cooking appliances. IEEE Trans Ind Electron 54(1):441–452. https://doi.org/10.1109/TIE.2006.888797

    Article  Google Scholar 

  31. Vishnuram P, Ramasamy S, Sureshkumar A (2019) Phase-locked loop-based asymmetric voltage cancellation for the power control in dual half-bridge series resonant inverter sharing common capacitor for induction heating applications. J Control Autom Electr Syst 30:1094–1106. https://doi.org/10.1007/s40313-019-00515-5

    Article  Google Scholar 

  32. Gomes RCM, Vitorino MA, Acevedo-Bueno DA, d. R Corrêa MB (2020) Multiphase resonant inverter with coupled coils for AC–AC induction heating application. IEEE Trans Ind Appl 56(1):551–560. https://doi.org/10.1109/TIA.2019.2955661

  33. Lucía Ó, Burdío JM, Barragán LA, Acero J, Millán I (2010) Series-resonant multiinverter for multiple induction heaters. IEEE Trans Power Electron 25(11):2860–2868. https://doi.org/10.1109/TPEL.2010.2051041

    Article  Google Scholar 

  34. Sarnago H, Burdío JM, Lucía Ó (2019) High-performance and cost-effective ZCS matrix resonant inverter for total active surface induction heating appliances. IEEE Trans Power Electron 34(1):117–125. https://doi.org/10.1109/TPEL.2018.2815902

    Article  Google Scholar 

  35. Sarnago H, Guillén P, Burdío JM, Lucia O (2019) Multiple-output ZVS resonant inverter architecture for flexible induction heating appliances. IEEE Access 7:157046–157056. https://doi.org/10.1109/ACCESS.2019.2950346

    Article  Google Scholar 

  36. Vishnuram P, Ramachandiran G (2021) A simple multi-frequency multiload independent power control using pulse density modulation scheme for cooking applications. Int Trans Electr Energ Syst 31:66. https://doi.org/10.1002/2050-7038.12771

    Article  Google Scholar 

  37. Pérez-Tarragona M, Sarnago H, Lucía Ó, Burdío JM (2018) Design and experimental analysis of PFC rectifiers for domestic induction heating applications. IEEE Trans Power Electron 33(8):6582–6594. https://doi.org/10.1109/TPEL.2017.2755367

    Article  Google Scholar 

  38. Saoudi M, Puyal D, Sarnago H, Antón D, Mediano A (2011) A new multiple coils topology for domestic induction cooking system. In: 14th European conference on power electronics and applications, pp 1–7

  39. Burdio JM, Monterde F, Garcia JR, Barragan LA, Martinez A (2005) A two-output series-resonant inverter for induction-heating cooking appliances. IEEE Trans Power Electron 20(4):815–822. https://doi.org/10.1109/TPEL.2005.850925

    Article  Google Scholar 

  40. Papani SK, Neti V, Murthy BK (2015) Dual frequency inverter configuration for multiple-load induction cooking application. IET Power Electron 8(4):591–601. https://doi.org/10.1049/iet-pel.2014.0114

    Article  Google Scholar 

  41. Khatroth S, Shunmugam P (2020) Cascaded full-bridge resonant inverter configuration for different material vessel induction cooking. IET Power Electron 13(19):4428–4438. https://doi.org/10.1049/iet-pel.2020.0728

    Article  Google Scholar 

  42. Lucia Ó, Carretero C, Burdio JM, Acero J, Almazan F (2012) Multiple-output resonant matrix converter for multiple induction heaters. IEEE Trans Ind Appl 48(4):1387–1396. https://doi.org/10.1109/TIA.2012.2199456

    Article  Google Scholar 

  43. Sarnago H, Lucía Ó, Pérez-Tarragona M, Burdío JM (2016) Dual-output boost resonant full-bridge topology and its modulation strategies for high-performance induction heating applications. IEEE Trans Ind Electron 63(6):3554–3561. https://doi.org/10.1109/TIE.2016.2530780

    Article  Google Scholar 

  44. Khatroth S, Shunmugam P (2021) Single-stage pulse frequency controlled AC–AC resonant converter for different material vessel induction cooking applications. Int J Circuits Theor Appl 66:1–20. https://doi.org/10.1002/cta.3042

    Article  Google Scholar 

  45. Sarnago H, Lucía Ó, Mediano A, Burdío JM (2014) Design and implementation of a high-efficiency multiple-output resonant converter for induction heating applications featuring wide bandgap devices. IEEE Trans Power Electron 29(5):2539–2549. https://doi.org/10.1109/TPEL.2013.2278718

    Article  Google Scholar 

  46. Gaudó PM, Bernal C, Avellaned J, Burdío JM (2012) Intermodulation distortion in 1SW-ZVS multi-inverter for induction heating home appliances. In: 2012 Twenty-seventh annual IEEE applied power electronics conference and exposition (APEC), pp 2223–2228. https://doi.org/10.1109/APEC.2012.6166131

  47. Guillén P, Sarnago H, Burdío J (2020) Acoustic noise analysis of multiplexed strategies in multi-output converters for induction cooktops. Int J Appl Electromagn Mech 63(1):59–68. https://doi.org/10.3233/JAE-209115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the revised manuscript.

Corresponding author

Correspondence to Nihan Altintas.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, M., Altintas, N. Multi-output AC–AC converter for domestic induction heating. Electr Eng 105, 297–316 (2023). https://doi.org/10.1007/s00202-022-01664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01664-8

Keywords

Navigation