Log in

Effects of vitamin D supplementation on neuroplasticity in older adults: a double-blinded, placebo-controlled randomised trial

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Vitamin D can improve muscle function and reduce falls, but whether it can strengthen neural connections within the brain and nervous system is not known. This 10-week randomised controlled trial indicates that treatment with 2,000 IU/day vitamin D3 does not significantly alter neuroplasticity relative to placebo in older adults.

Introduction

The purpose of this study was to examine the effects of vitamin D supplementation on neuroplasticity, serum brain-derived neurotrophic factor (BDNF) and muscle strength and function in older adults.

Methods

This was a 10-week double-blinded, placebo-controlled randomised trial in which 26 older adults with 25-hydroxyvitamin D [25OHD] concentrations 25–60 nmol/L were randomised to 2,000 IU/day vitamin D3 or matched placebo. Single- and paired-pulse transcranial magnetic stimulation applied over the motor cortex was used to assess changes in motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI), as measures of corticospinal excitability and inhibition respectively, by recording electromyography (EMG) responses to stimulation from the wrist extensors. Changes in muscle strength, stair climbing power, gait (timed-up-and-go), dynamic balance (four square step test), serum 25(OH)D and BDNF concentrations were also measured.

Results

After 10 weeks, mean 25(OH)D levels increased from 46 to 81 nmol/L in the vitamin D group with no change in the placebo group. The vitamin D group experienced a significant 8–11 % increase in muscle strength and a reduction in cortical excitability (MEP amplitude) and SICI relative to baseline (all P < 0.05), but these changes were not significantly different from placebo. There was no effect of vitamin D on muscle power, function or BDNF.

Conclusions

Daily supplementation with 2,000 IU vitamin D3 for 10 weeks had no significant effect on neuroplasticity compared to placebo, but the finding that vitamin D treatment alone was associated with a decrease in corticospinal excitability and intracortical inhibition warrants further investigation as this suggests that it may improve the efficacy of neural transmission within the corticospinal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, Wong JB, Egli A, Kiel DP, Henschkowski J (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339:b3692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Muir SW, Montero-Odasso M (2011) Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59:2291–2300

    Article  PubMed  Google Scholar 

  3. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB, Dick W (2001) In situ detection of 1, 25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33:19–24

    Article  CAS  PubMed  Google Scholar 

  4. Sorensen OH, Lund B, Saltin B, Lund B, Andersen RB, Hjorth L, Melsen F, Mosekilde L (1979) Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond) 56:157–161

    CAS  Google Scholar 

  5. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S, Matsumoto T (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144:5138–5144

    Article  CAS  PubMed  Google Scholar 

  6. Annweiler C, Schott AM, Berrut G, Chauvire V, Le Gall D, Inzitari M, Beauchet O (2010) Vitamin D and ageing: neurological issues. Neuropsychobiology 62:139–150

    Article  CAS  PubMed  Google Scholar 

  7. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29:21–30

    Article  CAS  PubMed  Google Scholar 

  8. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Sole J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882

    Article  CAS  PubMed  Google Scholar 

  9. Weier AT, Kidgell DJ (2012) Strength training with superimposed whole body vibration does not preferentially modulate cortical plasticity. ScientificWorldJournal 2012:876328

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ni Z, Chen R (2008) Short-interval intracortical inhibition: a complex measure. Clin Neurophysiol 119:2175–2176

    Article  PubMed  Google Scholar 

  11. Li Voti P, Conte A, Suppa A, Iezzi E, Bologna M, Aniello MS, Defazio G, Rothwell JC, Berardelli A (2011) Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. Exp Brain Res 212:91–99

    Article  CAS  PubMed  Google Scholar 

  12. Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5:1177–1184

    Article  CAS  PubMed  Google Scholar 

  13. Lipsky RH, Marini AM (2007) Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 1122:130–143

    Article  CAS  PubMed  Google Scholar 

  14. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lazowski DA, Ecclestone NA, Myers AM, Paterson DH, Tudor-Locke C, Fitzgerald C, Jones G, Shima N, Cunningham DA (1999) A randomized outcome evaluation of group exercise programs in long-term care institutions. J Gerontol A Biol Sci Med Sci 54:M621–M628

    Article  CAS  PubMed  Google Scholar 

  17. Stewart AL, Mills KM, King AC, Haskell WL, Gillis D, Ritter PL (2001) CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc 33:1126–1141

    Article  CAS  PubMed  Google Scholar 

  18. Ziemann U (2013) Pharmaco-transcranial magnetic stimulation studies of motor excitability. Handb Clin Neurol 116:387–397

    Article  PubMed  Google Scholar 

  19. Wrzosek M, Lukaszkiewicz J, Wrzosek M, Jakubczyk A, Matsumoto H, Piatkiewicz P, Radziwon-Zaleska M, Wojnar M, Nowicka G (2013) Vitamin D and the central nervous system. Pharmacol Rep 65:271–278

    Article  CAS  PubMed  Google Scholar 

  20. Chabas JF, Alluin O, Rao G, Garcia S, Lavaut MN, Risso JJ, Legre R, Magalon G, Khrestchatisky M, Marqueste T, Decherchi P, Feron F (2008) Vitamin D2 potentiates axon regeneration. J Neurotrauma 25:1247–1256

    Article  PubMed  Google Scholar 

  21. Bianco J, Gueye Y, Marqueste T, Alluin O, Risso JJ, Garcia S, Lavault MN, Khrestchatisky M, Feron F, Decherchi P (2011) Vitamin D3 improves respiratory adjustment to fatigue and H-reflex responses in paraplegic adult rats. Neuroscience 188:182–192

    Article  CAS  PubMed  Google Scholar 

  22. Chen XY, Carp JS, Chen L, Wolpaw JR (2002) Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats. Exp Brain Res 144:88–94

    Article  PubMed  Google Scholar 

  23. Skaria J, Katiyar BC, Srivastava TP, Dube B (1975) Myopathy and neuropathy associated with osteomalacia. Acta Neurol Scand 51:37–58

    Article  CAS  PubMed  Google Scholar 

  24. Daskalakis ZJ, Fitzgerald PB, Christensen BK (2007) The role of cortical inhibition in the pathophysiology and treatment of schizophrenia. Brain Res Rev 56:427–442

    Article  CAS  PubMed  Google Scholar 

  25. Floeter MK, Rothwell JC (1999) Releasing the brakes before pressing the gas pedal. Neurology 53:664–665

    Article  CAS  PubMed  Google Scholar 

  26. Coxon JP, Stinear CM, Byblow WD (2007) Selective inhibition of movement. J Neurophysiol 97:2480–2489

    Article  PubMed  Google Scholar 

  27. Buell JS, Dawson-Hughes B (2008) Vitamin D and neurocognitive dysfunction: preventing “D”ecline? Mol Aspects Med 29:415–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, Hewison M (2001) Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 86:888–894

    CAS  PubMed  Google Scholar 

  29. Feron F, Burne TH, Brown J, Smith E, McGrath JJ, Mackay-Sim A, Eyles DW (2005) Developmental vitamin D3 deficiency alters the adult rat brain. Brain Res Bull 65:141–148

    Article  CAS  PubMed  Google Scholar 

  30. Jones EG (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372

    Article  CAS  PubMed  Google Scholar 

  31. Diamond T, Wong YK, Golombick T (2013) Effect of oral cholecalciferol 2,000 versus 5,000 IU on serum vitamin D, PTH, bone and muscle strength in patients with vitamin D deficiency. Osteoporos Int 24:1101–1105

    Article  CAS  PubMed  Google Scholar 

  32. Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H (2009) Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int 20:315–322

    Article  CAS  PubMed  Google Scholar 

  33. Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL (2011) Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22(3):859–871

    CAS  PubMed  Google Scholar 

  34. Dhesi JK, Bearne LM, Moniz C, Hurley MV, Jackson SH, Swift CG, Allain TJ (2002) Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status. J Bone Miner Res 17:891–897

    Article  CAS  PubMed  Google Scholar 

  35. Weier AT, Pearce AJ, Kidgell DJ (2012) Strength training reduces intracortical inhibition. Acta Physiol (Oxf) 206:109–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Blackmores for providing the vitamin D and placebo capsules for the trial. We wish to thank Belinda De Ross for her assistance with the physiological testing.

Grants

None.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Daly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirotta, S., Kidgell, D.J. & Daly, R.M. Effects of vitamin D supplementation on neuroplasticity in older adults: a double-blinded, placebo-controlled randomised trial. Osteoporos Int 26, 131–140 (2015). https://doi.org/10.1007/s00198-014-2855-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2855-6

Keywords

Navigation