Log in

Risk Factors for Pelvic Organ Prolapse: Wide-Angled Mendelian Randomization Analysis

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and Hypothesis

We hypothesized that some metabolic factors, lifestyle factors, and socioeconomic factors may have a causal effect on pelvic organ prolapse (POP).

Methods

We selected instruments from corresponding genome-wide association studies (GWAS), which identified independent single nucleotide polymorphisms strongly associated with 12 potential risk factors. Summary statistics for POP were derived from two GWAS datasets, serving for discovery and replication stage. The primary analysis involved the use of the inverse-variance weighting mendelian randomization (MR) method, with additional sensitivity MR analyses conducted.

Results

The univariable mendelian randomization (UVMR) analysis in both the discovery and replication stage provided evidence for significant causal effects between higher waist-to-hip ratio adjusted for body mass index (WHRadjBMI) levels, lower high-density lipoprotein cholesterol (HDL-C) levels, and lower educational attainment and higher POP risk, as well as a suggestive positive causal effect between triglycerides and POP. The multivariable mendelian randomization (MVMR) analysis showed that only HDL-C among the three blood lipid fractions could reduce the risk of POP. Mediation analysis indicated that HDL-C may partially mediate the effect of WHRadjBMI on POP risk, and the causal effect between educational attainment and POP may be mediated through WHRadjBMI and HDL-C.

Conclusions

Our study's evidence supported a causal relationship between WHRadjBMI, triglycerides, HDL-C, educational attainment, and POP risk. This highlights that clinicians may guide the general female population to control obesity and blood lipid levels to reduce the risk of POP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Original data generated and analyzed during this study are included in this published article or in the data repositories listed in References. Data that support the findings of this study but are not included in the article or in the online supplementary files are available from the corresponding author upon reasonable request.

References

  1. Barber MD. Pelvic organ prolapse. BMJ. 2016;354:i3853.

    Article  PubMed  Google Scholar 

  2. Løwenstein E, Ottesen B, Gimbel H. Incidence and lifetime risk of pelvic organ prolapse surgery in Denmark from 1977 to 2009. Int Urogynecol J. 2015;26:49–55.

    Article  PubMed  Google Scholar 

  3. Schulten SF, Claas-Quax MJ, Weemhoff M, et al. Risk factors for primary pelvic organ prolapse and prolapse recurrence: an updated systematic review and meta-analysis. Am J Obstet Gynecol. 2022;227(2):192–208.

    Article  PubMed  Google Scholar 

  4. Friedman T, Eslick GD, Dietz HP. Risk factors for prolapse recurrence: systematic review and meta-analysis. Int Urogynecol J. 2018;29:13–21.

    Article  PubMed  Google Scholar 

  5. Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021;375:n2233.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davies NM, Holmes MV, Smith GD. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanderson E. Multivariable Mendelian randomization and mediation. Cold Spring Harb Perspect Med. 2021;11(2):a038984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pujol-Gualdo N, Läll K, Lepamets M, et al. Advancing our understanding of genetic risk factors and potential personalized strategies for pelvic organ prolapse. Nat Commun. 2022;13(1):3584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurki MI, Karjalainen J, Palta P, et al. FinnGen: unique genetic insights from combining isolated population and national health register data. MedRxiv. 2022; https://doi.org/10.1101/2022.03.03.22271360.

    Article  Google Scholar 

  10. Pulit SL, Stoneman C, Morris AP, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166–74.

    Article  CAS  PubMed  Google Scholar 

  11. Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Richardson TG, Sanderson E, Palmer TM, et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med. 2020;17(3): e1003062.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahajan A, Spracklen CN, Zhang W, et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54(5):560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wootton RE, Richmond RC, Stuijfzand BG, et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol Med. 2020;50(14):2435–43.

    Article  PubMed  Google Scholar 

  16. Klimentidis YC, Raichlen DA, Bea J, et al. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int J Obes. 2018;42(6):1161–76.

    Article  CAS  Google Scholar 

  17. Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50(8):1112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755–64.

    Article  PubMed  Google Scholar 

  22. Zenebe CB, Chanie WF, Aregawi AB, Andargie TM, Mihret MS. The effect of women’s body mass index on pelvic organ prolapse: a systematic review and meta analysis. Reprod Health. 2021;18(1):1–9.

    Article  Google Scholar 

  23. Giri A, Hellwege JN, Velez Edwards DR, Edwards TL. Obesity and pelvic organ prolapse: a systematic review and meta-analysis of observational studies. Am J Obstet Gynecol. 2017;217(1):11–26.e3.

    Article  PubMed  Google Scholar 

  24. Word RA, Pathi S, Schaffer JI. Pathophysiology of pelvic organ prolapse. Obstet Gynecol Clin. 2009;36(3):521–39.

    Article  Google Scholar 

  25. Welborn T, Dhaliwal S. Preferred clinical measures of central obesity for predicting mortality. Eur J Clin Nutr. 2007;61(12):1373–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kim YH, Kim JJ, Kim SM, Choi Y, Jeon MJ. Association between metabolic syndrome and pelvic floor dysfunction in middle-aged to older Korean women. Am J Obstet Gynecol. 2011;205(1):71.e1–8.

    Article  PubMed  Google Scholar 

  27. Ahn N, Kim K. High-density lipoprotein cholesterol (HDL-C) in cardiovascular disease: effect of exercise training. Integr Med Res. 2016;5(3):212–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stadler JT, Marsche G. Obesity-related changes in high-density lipoprotein metabolism and function. Int J Mol Sci. 2020;21(23):8985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brønnum-Hansen H, Davidsen M, Andersen I. Impact of the association between education and obesity on diabetes-free life expectancy. Eur J Pub Health. 2023;33(6):968–73.

    Article  Google Scholar 

  30. Bruckert E, Czernichow S, Bertrais S, et al. Blood lipid and lipoprotein levels: relationships with educational level and region of residence in the French SU.VI.MAX study. Prev Med. 2005;40(6):803–11.

    Article  CAS  PubMed  Google Scholar 

  31. Hujoel ML, Gazal S, Loh PR, Patterson N, Price AL. Liability threshold modeling of case–control status and family history of disease increases association power. Nat Genet. 2020;52(5):541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.X.: conceptualization, original draft preparation, data collection and analysis; C.Y. and M.Y.: conceptualization, original draft preparation; M.W.: data collection and analysis; Z.J.: resources and supervision.

Corresponding author

Correspondence to Zhongyu Jian.

Ethics declarations

Conflicts of Interest

None.

Additional information

Handling Editor: Rufus Cartwright

Editor in Chief: Maria A. Bortolini

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zheyu **ong, Chi Yuan, and Mengzhu Yang have contributed equally to this work and share the first authorship.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 603 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, Z., Yuan, C., Yang, M. et al. Risk Factors for Pelvic Organ Prolapse: Wide-Angled Mendelian Randomization Analysis. Int Urogynecol J (2024). https://doi.org/10.1007/s00192-024-05807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00192-024-05807-2

Keywords

Navigation