Log in

Hiatal failure: effects of pregnancy, delivery, and pelvic floor disorders on level III factors

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

The failure of the levator hiatus (LH) and urogenital hiatus (UGH) to remain closed is not only associated with pelvic floor disorders, but also contributes to recurrence after surgical repair. Pregnancy and vaginal birth are key events affecting this closure. An understanding of normal and failed hiatal closure is necessary to understand, manage, and prevent pelvic floor disorders.

Methods

This narrative review was conducted by applying the keywords “levator hiatus” OR “genital hiatus” OR “urogenital hiatus” in PubMed. Articles that reported hiatal size related to pelvic floor disorders and pregnancy were chosen. Weighted averages for hiatal size were calculated for each clinical situation.

Results

Women with prolapse have a 22% and 30% larger LH area measured by ultrasound at rest and during Valsalva than parous women with normal support. Women with persistently enlarged UGH have 2–3 times higher postoperative failure rates after surgery for prolapse. During pregnancy, the LH area at Valsalva increases by 29% from the first to the third trimester in preparation for childbirth. The enlarged postpartum hiatus recovers over time, but does not return to nulliparous size after vaginal birth. Levator muscle injury during vaginal birth, especially forceps-assisted, is associated with increases in hiatal size; however, it only explains a portion of hiatus variation—the rest can be explained by pelvic muscle function and possibly injury to other level III structures.

Conclusions

Failed hiatal closure is strongly related to pelvic floor disorders. Vaginal birth and levator injury are primary factors affecting this important mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In discussing levator injury some authors in the ultrasound literature refer to the pubovisceral muscle as the puborectal muscle.

References

  1. Handa VL, Blomquist JL, Carroll M, Roem J, Munoz A. Longitudinal changes in the genital hiatus preceding the development of pelvic organ prolapse. Am J Epidemiol. 2019;188(12):2196–201. https://doi.org/10.1093/aje/kwz195.

    Article  Google Scholar 

  2. Handa VL, Roem J, Blomquist JL, Dietz HP, Munoz A. Pelvic organ prolapse as a function of levator ani avulsion, hiatus size, and strength. Am J Obstet Gynecol. 2019;221(1):41.e1–7. https://doi.org/10.1016/j.ajog.2019.03.004.

    Article  Google Scholar 

  3. Blomquist JL, Munoz A, Carroll M, Handa VL. Association of delivery mode with pelvic floor disorders after childbirth. JAMA. 2018;320(23):2438–47. https://doi.org/10.1001/jama.2018.18315.

    Article  Google Scholar 

  4. Bradley MS, Askew AL, Vaughan MH, Kawasaki A, Visco AG. Robotic-assisted sacrocolpopexy: early postoperative outcomes after surgical reduction of enlarged genital hiatus. Am J Obstet Gynecol. 2018;218(5):514.e1–8. https://doi.org/10.1016/j.ajog.2018.01.046.

    Article  Google Scholar 

  5. Vaughan MH, Siddiqui NY, Newcomb LK, Weidner AC, Kawasaki A, Visco AG, Bradley MS. Surgical alteration of genital hiatus size and anatomic failure after vaginal vault suspension. Obstet Gynecol. 2018;131(6):1137–44. https://doi.org/10.1097/AOG.0000000000002593.

    Article  Google Scholar 

  6. Halban J, Tandler J. Anatomie und Ätiologie der Genital prolapse beim Weibe. Vienna and Leipzig: Wilhelm Braumüller; 1907.

    Google Scholar 

  7. DeLancey JO. Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol. 1992;166(6 Pt1):1717–24 discussion 1724–8.

    Article  CAS  Google Scholar 

  8. DeLancey JO. Structural anatomy of the posterior pelvic compartment as it relates to rectocele. Am J Obstet Gynecol. 1999;180(4):815–23.

    Article  CAS  Google Scholar 

  9. Raizada V, Bhargava V, Jung SA, Karstens A, Pretorius D, Krysl P, Mittal RK. Dynamic assessment of the vaginal high-pressure zone using high-definition manometery, 3-dimensional ultrasound, and magnetic resonance imaging of the pelvic floor muscles. Am J Obstet Gynecol. 2010;203(2):172.e1–8. https://doi.org/10.1016/j.ajog.2010.02.028.

    Article  Google Scholar 

  10. Kearney R, Sawhney R, DeLancey JO. Levator ani muscle anatomy evaluated by origin-insertion pairs. Obstet Gynecol. 2004;104(1):168–73. https://doi.org/10.1097/01.AOG.0000128906.61529.6b.

    Article  Google Scholar 

  11. Betschart C, Kim J, Miller JM, Ashton-Miller JA, DeLancey JO. Comparison of muscle fiber directions between different levator ani muscle subdivisions: in vivo MRI measurements in women. Int Urogynecol J. 2014;25(9):1263–8. https://doi.org/10.1007/s00192-014-2395-9.

    Article  Google Scholar 

  12. Lawson JO. Pelvic anatomy. I. Pelvic floor muscles. Ann R Coll Surg Engl. 1974;54(5):244–52.

    CAS  Google Scholar 

  13. Shobeiri SA, Rostaminia G, White D, Quiroz LH. The determinants of minimal levator hiatus and their relationship to the puborectalis muscle and the levator plate. BJOG. 2013;120(2):205–11. https://doi.org/10.1111/1471-0528.12055.

    Article  Google Scholar 

  14. Roberts WH, Harrison CW, Mitchell DA, Fischer HF. The levator ani muscle and the nerve supply of its puborectalis component. Clin Anat. 1988;1:267–83.

    Article  Google Scholar 

  15. Dietz HP, Shek C, Clarke B. Biometry of the pubovisceral muscle and levator hiatus by three-dimensional pelvic floor ultrasound. Ultrasound Obstet Gynecol. 2005;25(6):580–5. https://doi.org/10.1002/uog.1899.

    Article  CAS  Google Scholar 

  16. Nardos R, Thurmond A, Holland A, Gregory WT. Pelvic floor levator hiatus measurements: MRI versus ultrasound. Female Pelvic Med Reconstr Surg. 2014;20(4):216–21. https://doi.org/10.1097/SPV.0000000000000079.

    Article  Google Scholar 

  17. Khunda A, Shek KL, Dietz HP. Can ballooning of the levator hiatus be determined clinically? Am J Obstet Gynecol. 2012;206(3):246.e1–4. https://doi.org/10.1016/j.ajog.2011.10.876.

    Article  Google Scholar 

  18. Bump RC, Mattiasson A, Bo K, Brubaker LP, DeLancey JO, Klarskov P, et al. The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction. Am J Obstet Gynecol. 1996;175(1):10–7.

    Article  CAS  Google Scholar 

  19. Yousuf AA, DeLancey JO, Brandon CJ, Miller JM. Pelvic structure and function at 1 month compared to 7 months by dynamic magnetic resonance after vaginal birth. Am J Obstet Gynecol. 2009;201(5):514.e1–7. https://doi.org/10.1016/j.ajog.2009.06.048.

    Article  Google Scholar 

  20. Ow LL, Subramaniam N, Kamisan Atan I, Friedman T, Martin A, Dietz HP. Should genital hiatus/perineal body be measured at rest or on Valsalva? Female Pelvic Med Reconstr Surg. 2019;25(6):415–8. https://doi.org/10.1097/SPV.0000000000000608.

    Article  Google Scholar 

  21. Alshiek J, Jalalizadeh M, Wei Q, Chitnis P, Shobeiri SA. Ultrasonographic age-related changes of the pelvic floor muscles in nulliparous women and their association with pelvic floor symptoms: a pilot study. Neurourol Urodyn. 2019;38(5):1305–12. https://doi.org/10.1002/nau.23979.

    Article  Google Scholar 

  22. Swenson CW, Masteling M, DeLancey JO, Nandikanti L, Schmidt P, Chen L. Aging effects on pelvic floor support: a pilot study comparing young versus older nulliparous women. Int Urogynecol J. 2020;31(3):535–43. https://doi.org/10.1007/s00192-019-04063-z.

    Article  Google Scholar 

  23. Abdool Z, Dietz HP, Lindeque BG. Ethnic differences in the levator hiatus and pelvic organ descent: a prospective observational study. Ultrasound Obstet Gynecol. 2017;50(2):242–6. https://doi.org/10.1002/uog.17297.

    Article  CAS  Google Scholar 

  24. Shek KL, Krause HG, Wong V, Goh J, Dietz HP. Is pelvic organ support different between young nulliparous African and Caucasian women? Ultrasound Obstet Gynecol. 2016;47(6):774–8. https://doi.org/10.1002/uog.15811.

    Article  CAS  Google Scholar 

  25. Abdool Z, Dietz HP, Lindeque BG. Interethnic variation in pelvic floor morphology in women with symptomatic pelvic organ prolapse. Int Urogynecol J. 2018;29(5):745–50. https://doi.org/10.1007/s00192-017-3391-7.

    Article  Google Scholar 

  26. Cheung RY, Shek KL, Chan SS, Chung TK, Dietz HP. Pelvic floor muscle biometry and pelvic organ mobility in East Asian and Caucasian nulliparae. Ultrasound Obstet Gynecol. 2015;45(5):599–604. https://doi.org/10.1002/uog.14656.

    Article  CAS  Google Scholar 

  27. Handa VL, Lockhart ME, Fielding JR, Bradley CS, Brubaker L, Cundiff GW, et al. Racial differences in pelvic anatomy by magnetic resonance imaging. Obstet Gynecol. 2008;111(4):914–20. https://doi.org/10.1097/AOG.0b013e318169ce03.

    Article  Google Scholar 

  28. Yang JM, Yang SH, Huang WC. Biometry of the pubovisceral muscle and levator hiatus in nulliparous Chinese women. Ultrasound Obstet Gynecol. 2006;28(5):710–6. https://doi.org/10.1002/uog.3825.

    Article  Google Scholar 

  29. Dietz HP, Shek C, De Leon J, Steensma AB. Ballooning of the levator hiatus. Ultrasound Obstet Gynecol. 2008;31(6):676–80. https://doi.org/10.1002/uog.5355.

    Article  CAS  Google Scholar 

  30. Visco AG, Wei JT, McClure LA, Handa VL, Nygaard IE, Pelvic Floor Disorders N. Effects of examination technique modifications on pelvic organ prolapse quantification (POP-Q) results. Int Urogynecol J Pelvic Floor Dysfunct. 2003;14(2):136–40. https://doi.org/10.1007/s00192-002-1030-3.

    Article  Google Scholar 

  31. Berger MB, Kolenic GE, Fenner DE, Morgan DM, DeLancey JOL. Structural, functional, and symptomatic differences between women with rectocele versus cystocele and normal support. Am J Obstet Gynecol. 2018;218(5):510.e1–8. https://doi.org/10.1016/j.ajog.2018.01.033.

    Article  Google Scholar 

  32. Ghetti C, Gregory WT, Edwards SR, Otto LN, Clark AL. Severity of pelvic organ prolapse associated with measurements of pelvic floor function. Int Urogynecol J Pelvic Floor Dysfunct. 2005;16(6):432–6. https://doi.org/10.1007/s00192-004-1274-1.

    Article  Google Scholar 

  33. Hsu Y, Summers A, Hussain HK, Guire KE, Delancey JO. Levator plate angle in women with pelvic organ prolapse compared to women with normal support using dynamic MR imaging. Am J Obstet Gynecol. 2006;194(5):1427–33. https://doi.org/10.1016/j.ajog.2006.01.055.

    Article  Google Scholar 

  34. Sánchez-Ferrer ML, Prieto-Sánchez MT, Moya-Jimenez C, Mendiola J, Garciá-Hernandez CM, Carmona-Barnosi A, et al. Anogenital distance and perineal measurements of the pelvic organ prolapse (POP) quantification system. J Vis Exp 2018;(139):57912. https://doi.org/10.3791/57912.

  35. Dunivan GC, Lyons KE, Jeppson PC, Ninivaggio CS, Komesu YM, Alba FM, et al. Pelvic organ prolapse stage and the relationship to genital hiatus and perineal body measurements. Female Pelvic Med Reconstr Surg. 2016;22(6):497–500. https://doi.org/10.1097/SPV.0000000000000323.

    Article  Google Scholar 

  36. Lowder JL, Oliphant SS, Shepherd JP, Ghetti C, Sutkin G. Genital hiatus size is associated with and predictive of apical vaginal support loss. Am J Obstet Gynecol. 2016;214(6):718.e1–8. https://doi.org/10.1016/j.ajog.2015.12.027.

    Article  Google Scholar 

  37. English EM, Chen L, Sammarco AG, Kolenic GE, Cheng W, Ashton-Miller JA, et al. Mechanisms of hiatus failure in prolapse: a multifaceted evaluation. Int Urogynecol J. 2021;32(6):1545–53. https://doi.org/10.1007/s00192-020-04651-4.

    Article  Google Scholar 

  38. Kikuchi JY, Muniz KS, Handa VL. Surgical repair of the genital hiatus: a narrative review. Int Urogynecol J. 2021;32(8):2111–7. https://doi.org/10.1007/s00192-021-04680-7.

    Article  Google Scholar 

  39. Sammarco AG, Nandikanti L, Kobernik EK, **e B, Jankowski A, Swenson CW, DeLancey JOL. Interactions among pelvic organ protrusion, levator ani descent, and hiatal enlargement in women with and without prolapse. Am J Obstet Gynecol. 2017;217(5):614.e1–7. https://doi.org/10.1016/j.ajog.2017.07.007.

    Article  Google Scholar 

  40. Chen L, Lisse S, Larson K, Berger MB, Ashton-Miller JA, DeLancey JO. Structural failure sites in anterior vaginal wall prolapse: identification of a collinear triad. Obstet Gynecol. 2016;128(4):853–62. https://doi.org/10.1097/AOG.0000000000001652.

    Article  Google Scholar 

  41. Handa VL, Blomquist JL, Carroll MK, Munoz A. Genital hiatus size and the development of prolapse among parous women. Female Pelvic Med Reconstr Surg. 2021;27(2):e448–52. https://doi.org/10.1097/SPV.0000000000000960.

    Article  Google Scholar 

  42. Chen R, Song Y, Jiang L, Hong X, Ye P. The assessment of voluntary pelvic floor muscle contraction by three-dimensional transperineal ultrasonography. Arch Gynecol Obstet. 2011;284(4):931–6. https://doi.org/10.1007/s00404-010-1795-4.

    Article  Google Scholar 

  43. van Veelen A, Schweitzer K, van der Vaart H. Ultrasound assessment of urethral support in women with stress urinary incontinence during and after first pregnancy. Obstet Gynecol. 2014;124(2 Pt 1):249–56. https://doi.org/10.1097/AOG.0000000000000355.

    Article  Google Scholar 

  44. Lu R, Zhang Y, Dai FR, Yu YP. Application of transperineal pelvic floor ultrasonography in the diagnosis of female stress urinary incontinence. Zhonghua Yi Xue Za Zhi. 2018;98(33):2675–7. https://doi.org/10.3760/cma.j.issn.0376-2491.2018.33.013.

    Article  CAS  Google Scholar 

  45. Falkert A, Willmann A, Endress E, Meint P, Seelbach-Gobel B. Three-dimensional ultrasound of pelvic floor: is there a correlation with delivery mode and persisting pelvic floor disorders 18–24 months after first delivery? Ultrasound Obstet Gynecol. 2013;41(2):204–9. https://doi.org/10.1002/uog.11214.

    Article  CAS  Google Scholar 

  46. **ao T, Chen Y, Gan Y, Xu J, Huang W, Zhang X. Can stress urinary incontinence be predicted by ultrasound? AJR Am J Roentgenol. 2019;213(5):1163–9. https://doi.org/10.2214/AJR.18.20893.

    Article  Google Scholar 

  47. DeLancey JO, Trowbridge ER, Miller JM, Morgan DM, Guire K, Fenner DE, et al. Stress urinary incontinence: relative importance of urethral support and urethral closure pressure. J Urol. 2008;179(6):2286–90; discussion 2290. https://doi.org/10.1016/j.juro.2008.01.098.

    Article  Google Scholar 

  48. Murad-Regadas SM, Fernandes GO, Regadas FS, Rodrigues LV, Pereira Jde J, Dealcanfreitas ID, et al. Assessment of pubovisceral muscle defects and levator hiatal dimensions in women with faecal incontinence after vaginal delivery: is there a correlation with severity of symptoms? Colorectal Dis. 2014;16(12):1010–8. https://doi.org/10.1111/codi.12740.

    Article  CAS  Google Scholar 

  49. Murad-Regadas SM, da S. Fernandes GO, Regadas FS, Rodrigues LV, Filho FS, Dealcanfreitas ID, da Silva Vilarinho A, et al. Usefulness of anorectal and endovaginal 3D ultrasound in the evaluation of sphincter and pubovisceral muscle defects using a new scoring system in women with fecal incontinence after vaginal delivery. Int J Colorectal Dis. 2017;32(4):499–507. https://doi.org/10.1007/s00384-016-2750-z.

    Article  Google Scholar 

  50. Lewicky-Gaupp C, Brincat C, Yousuf A, Patel DA, Delancey JO, Fenner DE. Fecal incontinence in older women: are levator ani defects a factor? Am J Obstet Gynecol. 2010;202(5):491.e1–6. https://doi.org/10.1016/j.ajog.2010.01.020.

    Article  Google Scholar 

  51. Vergeldt TF, Notten KJ, Weemhoff M, van Kuijk SM, Mulder FE, Beets-Tan RG, et al. Levator hiatal area as a risk factor for cystocele recurrence after surgery: a prospective study. BJOG. 2015;122(8):1130–7. https://doi.org/10.1111/1471-0528.13340.

    Article  CAS  Google Scholar 

  52. Diez-Itza I, Avila M, Uranga S, Belar M, Lekuona A, Martin A. Factors involved in prolapse recurrence one year after anterior vaginal repair. Int Urogynecol J. 2020;31(10):2027–34. https://doi.org/10.1007/s00192-020-04468-1.

    Article  Google Scholar 

  53. Schmidt P, Chen L, DeLancey JO, Swenson CW. Preoperative level II/III MRI measures predicting long-term prolapse recurrence after native tissue repair. Int Urogynecol J. 2022;33(1):133–41. https://doi.org/10.1007/s00192-021-04854-3.

    Article  Google Scholar 

  54. Jones K, Yang L, Lowder JL, Meyn L, Ellison R, Zyczynski HM, et al. Effect of pessary use on genital hiatus measurements in women with pelvic organ prolapse. Obstet Gynecol. 2008;112(3):630–6. https://doi.org/10.1097/AOG.0b013e318181879f.

    Article  Google Scholar 

  55. Boyd SS, O'Sullivan DM, Tunitsky-Bitton E. A comparison of two methods of catheter management after pelvic reconstructive surgery: a randomized controlled trial. Obstet Gynecol. 2019;134(5):1037–45. https://doi.org/10.1097/AOG.0000000000003525.

    Article  Google Scholar 

  56. Haylen BT, Avery D, Chiu TL, Birrell W. Posterior repair quantification (PR-Q) using key anatomical indicators (KAI): preliminary report. Int Urogynecol J. 2014;25(12):1665–72. https://doi.org/10.1007/s00192-014-2433-7.

    Article  Google Scholar 

  57. Haylen BT, Younis M, Naidoo S, Birrell W. Perineorrhaphy quantitative assessment (Pe-QA). Int Urogynecol J. 2015;26(4):539–44. https://doi.org/10.1007/s00192-014-2528-1.

    Article  Google Scholar 

  58. Durnea CM, Basu M, Dadhwal K, Gayle YV, Gauthaman N, Khunda A, et al. Perioperative changes in superficial pelvic organ prolapse quantification system measurements after prolapse surgery. Int J Gynaecol Obstet. 2019;145(2):239–43. https://doi.org/10.1002/ijgo.12783.

    Article  Google Scholar 

  59. Geynisman-Tan J, Kenton KS, Brown O, Gillingham A, Lewicky-Gaupp C, Mueller MG, Collins SA. Mind the gap: changes in levator dimensions aftersSacrocolpopexy. Female Pelvic Med Reconstr Surg. 2021;27(1):e184–6. https://doi.org/10.1097/SPV.0000000000000881.

    Article  Google Scholar 

  60. Carter-Brooks CM, Lowder JL, Du AL, Lavelle ES, Giugale LE, Shepherd JP. Restoring genital hiatus to normative values after apical suspension alone versus With level 3 support procedures. Female Pelvic Med Reconstr Surg. 2019;25(3):226–30. https://doi.org/10.1097/SPV.0000000000000528.

    Article  Google Scholar 

  61. Guanzon A, Heit M, Khoder W. Increasing anteroposterior genital hiatus widening does not limit apical descent for prolapse staging during Valsalva's maneuver: effect on symptom severity and surgical decision making. Female Pelvic Med Reconstr Surg. 2018;24(6):412–8. https://doi.org/10.1097/SPV.0000000000000474.

    Article  Google Scholar 

  62. Garcia AN, Ulker A, Aserlind A, Timmons D, Medina CA. Enlargement of the genital hiatus is associated with prolapse recurrence in patients undergoing sacrospinous ligament fixation. Int J Gynaecol Obstet. 2022;157(1):96–101. https://doi.org/10.1002/ijgo.13828.

    Article  Google Scholar 

  63. Sutkin G, Zyczynski HM, Sridhar A, Jelovsek JE, Rardin CR, Mazloomdoost D, et al. Association between adjuvant posterior repair and success of native tissue apical suspension. Am J Obstet Gynecol. 2020;222(2):161.e161–8. https://doi.org/10.1016/j.ajog.2019.08.024.

    Article  CAS  Google Scholar 

  64. Andrew BP, Shek KL, Chantarasorn V, Dietz HP. Enlargement of the levator hiatus in female pelvic organ prolapse: cause or effect? Aust N Z J Obstet Gynaecol. 2013;53(1):74–8. https://doi.org/10.1111/ajo.12026.

    Article  Google Scholar 

  65. David M, Catala L, Lefebvre C, Descamp P, Legendre G. The importance of using 3D ultrasound during pelvic organ prolapse surgery in relation to pre- and post-operative quality of life questionnaires. J Gynecol Obstet Hum Reprod. 2020;49(6):101682. https://doi.org/10.1016/j.jogoh.2020.101682.

    Article  CAS  Google Scholar 

  66. Wong V, Shek KL, Korda A, Benness C, Pardey J, Dietz HP. A pilot study on surgical reduction of the levator hiatus—the puborectalis sling. Int Urogynecol J. 2019;30(12):2127–33. https://doi.org/10.1007/s00192-019-04062-0.

    Article  Google Scholar 

  67. Barber MD, Brubaker L, Nygaard I, Wheeler TL 2nd, Schaffer J, Chen Z, et al. Defining success after surgery for pelvic organ prolapse. Obstet Gynecol. 2009;114(3):600–9. https://doi.org/10.1097/AOG.0b013e3181b2b1ae.

    Article  Google Scholar 

  68. Jelovsek JE, Gantz MG, Lukacz ES, Zyczynski HM, Sridhar A, Kery C, et al. Subgroups of failure after surgery for pelvic organ prolapse and associations with quality of life outcomes: a longitudinal cluster analysis. Am J Obstet Gynecol. 2021;225(5):504.e1–22. https://doi.org/10.1016/j.ajog.2021.06.068.

    Article  Google Scholar 

  69. Oliphant SS, Nygaard IE, Zong W, Canavan TP, Moalli PA. Maternal adaptations in preparation for parturition predict uncomplicated spontaneous delivery outcome. Am J Obstet Gynecol. 2014;211(6):630.e1–7. https://doi.org/10.1016/j.ajog.2014.06.021.

    Article  Google Scholar 

  70. Van de Waarsenburg MK, Verberne EA, van der Vaart CH, Withagen MIJ. Recovery of puborectalis muscle after vaginal delivery: an ultrasound study. Ultrasound Obstet Gynecol. 2018;52(3):390–5. https://doi.org/10.1002/uog.18976.

    Article  Google Scholar 

  71. Sanozidis A, Mikos T, Assimakopoulos E, Athanasiadis A, Tantanassis T, Tarlatzis BC, et al. Changes in levator hiatus dimensions during pregnancy and after delivery in nulliparas: a prospective cohort study using 3D transperineal ultrasound. J Matern Fetal Neonatal Med. 2018;31(11):1505–12. https://doi.org/10.1080/14767058.2017.1319926.

    Article  CAS  Google Scholar 

  72. Chan SS, Cheung RY, Yiu KW, Lee LL, Chung TK. Pelvic floor biometry in Chinese primiparous women 1 year after delivery: a prospective observational study. Ultrasound Obstet Gynecol. 2014;43(4):466–74. https://doi.org/10.1002/uog.13249.

    Article  CAS  Google Scholar 

  73. Toozs-Hobson P, Balmforth J, Cardozo L, Khullar V, Athanasiou S. The effect of mode of delivery on pelvic floor functional anatomy. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(3):407–16. https://doi.org/10.1007/s00192-007-0455-0.

    Article  Google Scholar 

  74. van Delft K, Sultan AH, Thakar R, Schwertner-Tiepelmann N, Kluivers K. The relationship between postpartum levator ani muscle avulsion and signs and symptoms of pelvic floor dysfunction. BJOG. 2014;121(9):1164–71; discussion 1172. https://doi.org/10.1111/1471-0528.12666.

    Article  Google Scholar 

  75. Staer-Jensen J, Siafarikas F, Hilde G, Benth JS, Bo K, Engh ME. Postpartum recovery of levator hiatus and bladder neck mobility in relation to pregnancy. Obstet Gynecol. 2015;125(3):531–9. https://doi.org/10.1097/AOG.0000000000000645.

    Article  Google Scholar 

  76. Shek KL, Dietz HP. The effect of childbirth on hiatal dimensions. Obstet Gynecol. 2009;113(6):1272–8. https://doi.org/10.1097/AOG.0b013e3181a5ef23.

    Article  Google Scholar 

  77. Alperin M, Lawley DM, Esparza MC, Lieber RL. Pregnancy-induced adaptations in the intrinsic structure of rat pelvic floor muscles. Am J Obstet Gynecol. 2015;213(2):191.e191–7. https://doi.org/10.1016/j.ajog.2015.05.012.

    Article  Google Scholar 

  78. Gachon B, Fritel X, Fradet L, Decatoire A, Lacouture P, Panjo H, et al. Is levator hiatus distension associated with peripheral ligamentous laxity during pregnancy? Int Urogynecol J. 2017;28(8):1223–31. https://doi.org/10.1007/s00192-016-3252-9.

    Article  Google Scholar 

  79. Fuchs F, Bruyere M, Senat MV, Purenne E, Benhamou D, Fernandez H. Are standard intra-abdominal pressure values different during pregnancy? PLoS One. 2013;8(10):e77324. https://doi.org/10.1371/journal.pone.0077324.

    Article  CAS  Google Scholar 

  80. Siafarikas F, Staer-Jensen J, Hilde G, Bo K, Ellstrom Engh M. Levator hiatus dimensions in late pregnancy and the process of labor: a 3- and 4-dimensional transperineal ultrasound study. Am J Obstet Gynecol. 2014;210(5):484.e1–7. https://doi.org/10.1016/j.ajog.2014.02.021.

    Article  Google Scholar 

  81. Svabik K, Shek KL, Dietz HP. How much does the levator hiatus have to stretch during childbirth? BJOG. 2009;116(12):1657–62. https://doi.org/10.1111/j.1471-0528.2009.02321.x.

    Article  CAS  Google Scholar 

  82. **g D, Ashton-Miller JA, DeLancey JO. A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech. 2012;45(3):455–60. https://doi.org/10.1016/j.jbiomech.2011.12.002.

    Article  Google Scholar 

  83. Shek KL, Kruger J, Dietz HP. The effect of pregnancy on hiatal dimensions and urethral mobility: an observational study. Int Urogynecol J. 2012;23(11):1561–7. https://doi.org/10.1007/s00192-012-1795-y.

    Article  Google Scholar 

  84. Tunn R, DeLancey JO, Howard D, Thorp JM, Ashton-Miller JA, Quint LE. MR imaging of levator ani muscle recovery following vaginal delivery. Int Urogynecol J Pelvic Floor Dysfunct. 1999;10(5):300–7. https://doi.org/10.1007/s001929970006.

    Article  CAS  Google Scholar 

  85. Kamisan Atan I, Gerges B, Shek KL, Dietz HP. The association between vaginal parity and hiatal dimensions: a retrospective observational study in a tertiary urogynaecological centre. BJOG. 2015;122(6):867–72. https://doi.org/10.1111/1471-0528.12920.

    Article  CAS  Google Scholar 

  86. Rusavy Z, Paymova L, Kozerovsky M, Veverkova A, Kalis V, Kamel RA, et al. Levator ani avulsion: a systematic evidence review (LASER). BJOG. 2021;129(4):517–28. https://doi.org/10.1111/1471-0528.16837.

    Article  Google Scholar 

  87. Miller JM, Brandon C, Jacobson JA, Low LK, Zielinski R, Ashton-Miller J, et al. MRI findings in patients considered high risk for pelvic floor injury studied serially after vaginal childbirth. AJR Am J Roentgenol. 2010;195(3):786–91. https://doi.org/10.2214/AJR.09.3508.

    Article  Google Scholar 

  88. Pipitone F, Swenson CW, DeLancey JOL, Chen L. Novel 3D MRI technique to measure perineal membrane structural changes with pregnancy and childbirth: technique development and measurement feasibility. Int Urogynecol J. 2021;32(9):2413–20. https://doi.org/10.1007/s00192-021-04795-x.

    Article  Google Scholar 

  89. Pipitone F, Duarte Thibault ME, Gaetke-Udager K, Fenner DE, Swenson CW. Musculoskeletal findings on MRI among postpartum women with persistent pelvic pain. Int Urogynecol J. 2021;32(7):1779–83. https://doi.org/10.1007/s00192-020-04441-y.

    Article  Google Scholar 

  90. Handa VL, Blomquist JL, Roem J, Munoz A, Dietz HP. Levator morphology and strength after obstetric avulsion of the levator ani muscle. Female Pelvic Med Reconstr Surg. 2020;26(1):56–60. https://doi.org/10.1097/SPV.0000000000000641.

    Article  Google Scholar 

  91. DeLancey JO, Sorensen HC, Lewicky-Gaupp C, Smith TM. Comparison of the puborectal muscle on MRI in women with POP and levator ani defects with those with normal support and no defect. Int Urogynecol J. 2012;23(1):73–7. https://doi.org/10.1007/s00192-011-1527-8.

    Article  Google Scholar 

  92. Majida M, Braekken IH, Bo K, Engh ME. Levator hiatus dimensions and pelvic floor function in women with and without major defects of the pubovisceral muscle. Int Urogynecol J. 2012;23(6):707–14. https://doi.org/10.1007/s00192-011-1652-4.

    Article  Google Scholar 

  93. Guzman Rojas R, Wong V, Shek KL, Dietz HP. Impact of levator trauma on pelvic floor muscle function. Int Urogynecol J. 2014;25(3):375–80. https://doi.org/10.1007/s00192-013-2226-4.

    Article  Google Scholar 

  94. Dietz HP, Bhalla R, Chantarasorn V, Shek KL. Avulsion of the puborectalis muscle is associated with asymmetry of the levator hiatus. Ultrasound Obstet Gynecol. 2011;37(6):723–6. https://doi.org/10.1002/uog.8969.

    Article  CAS  Google Scholar 

  95. Bo K, Hilde G, Tennfjord MK, Staer-Jensen J, Siafarikas F, Engh ME. Pelvic floor muscle variables and levator hiatus dimensions: a 3/4D transperineal ultrasound cross-sectional study on 300 nulliparous pregnant women. Int Urogynecol J. 2014;25(10):1357–61. https://doi.org/10.1007/s00192-014-2408-8.

    Article  Google Scholar 

  96. Braekken IH, Majida M, Engh ME, Bo K. Are pelvic floor muscle thickness and size of levator hiatus associated with pelvic floor muscle strength, endurance and vaginal resting pressure in women with pelvic organ prolapse stages I–III? A cross sectional 3D ultrasound study. Neurourol Urodyn. 2014;33(1):115–20. https://doi.org/10.1002/nau.22384.

    Article  Google Scholar 

  97. Ouchi M, Kitta T, Suzuki S, Shinohara N, Kato K. Evaluating pelvic floor muscle contractility using two-dimensional transperineal ultrasonography in patients with pelvic organ prolapse. Neurourol Urodyn. 2019;38(5):1363–9. https://doi.org/10.1002/nau.23987.

    Article  Google Scholar 

  98. Blomquist JL, Carroll M, Munoz A, Handa VL. Pelvic floor muscle strength and the incidence of pelvic floor disorders after vaginal and cesarean delivery. Am J Obstet Gynecol. 2020;222(1):62.e1–8. https://doi.org/10.1016/j.ajog.2019.08.003.

    Article  Google Scholar 

  99. Bo K, Talseth T, Holme I. Single blind, randomised controlled trial of pelvic floor exercises, electrical stimulation, vaginal cones, and no treatment in management of genuine stress incontinence in women. BMJ. 1999;318(7182):487–93. https://doi.org/10.1136/bmj.318.7182.487.

    Article  CAS  Google Scholar 

  100. Braekken IH, Majida M, Engh ME, Bo K. Morphological changes after pelvic floor muscle training measured by 3-dimensional ultrasonography: a randomized controlled trial. Obstet Gynecol. 2010;115(2 Pt 1):317–24. https://doi.org/10.1097/AOG.0b013e3181cbd35f.

    Article  Google Scholar 

  101. Bo K, Hilde G, Staer-Jensen J, Siafarikas F, Tennfjord MK, Engh ME. Does general exercise training before and during pregnancy influence the pelvic floor "opening" and delivery outcome? A 3D/4D ultrasound study following nulliparous pregnant women from mid-pregnancy to childbirth. Br J Sports Med. 2015;49(3):196–9. https://doi.org/10.1136/bjsports-2014-093548.

    Article  Google Scholar 

  102. Kearney R, Fitzpatrick M, Brennan S, Behan M, Miller J, Keane D, et al. Levator ani injury in primiparous women with forceps delivery for fetal distress, forceps for second stage arrest, and spontaneous delivery. Int J Gynaecol Obstet 2010;111(1):19–22. doi:https://doi.org/10.1016/j.ijgo.2010.05.019

    Article  Google Scholar 

  103. Caudwell-Hall J, Kamisan Atan I, Martin A, Guzman Rojas R, Langer S, Shek K, et al. Intrapartum predictors of maternal levator ani injury. Acta Obstet Gynecol Scand. 2017;96(4):426–31. https://doi.org/10.1111/aogs.13103.

    Article  Google Scholar 

  104. Memon HU, Blomquist JL, Dietz HP, Pierce CB, Weinstein MM, Handa VL. Comparison of levator ani muscle avulsion injury after forceps-assisted and vacuum-assisted vaginal childbirth. Obstet Gynecol. 2015;125(5):1080–7. https://doi.org/10.1097/AOG.0000000000000825.

    Article  Google Scholar 

  105. Garcia-Mejido JA, Gutierrez L, Fernandez-Palacin A, Aquise A, Sainz JA. Levator ani muscle injuries associated with vaginal vacuum assisted delivery determined by 3/4D transperineal ultrasound. J Matern Fetal Neonatal Med. 2017;30(16):1891–6. https://doi.org/10.1080/14767058.2016.1228104.

    Article  CAS  Google Scholar 

  106. Lisonkova S, Lavery JA, Ananth CV, Chen I, Muraca G, Cundiff GW, et al. Temporal trends in obstetric trauma and inpatient surgery for pelvic organ prolapse: an age-period-cohort analysis. Am J Obstet Gynecol. 2016;215(2):208.e1–12. https://doi.org/10.1016/j.ajog.2016.02.027.

    Article  Google Scholar 

  107. Handa VL, Blomquist JL, Roem J, Munoz A, Dietz HP. Pelvic floor disorders after obstetric avulsion of the levator ani muscle. Female Pelvic Med Reconstr Surg. 2019;25(1):3–7. https://doi.org/10.1097/SPV.0000000000000644.

    Article  Google Scholar 

  108. Albrich SB, Laterza RM, Skala C, Salvatore S, Koelbl H, Naumann G. Impact of mode of delivery on levator morphology: a prospective observational study with three-dimensional ultrasound early in the postpartum period. BJOG. 2012;119(1):51–60. https://doi.org/10.1111/j.1471-0528.2011.03152.x.

    Article  CAS  Google Scholar 

  109. Brandon C, Jacobson JA, Low LK, Park L, DeLancey J, Miller J. Pubic bone injuries in primiparous women: magnetic resonance imaging in detection and differential diagnosis of structural injury. Ultrasound Obstet Gynecol. 2012;39(4):444–51. https://doi.org/10.1002/uog.9082.

    Article  CAS  Google Scholar 

  110. Nandikanti L, Sammarco AG, Chen L, Ashton-Miller JA, DeLancey JO. Levator bowl volume during straining and its relationship to other levator measures. Int Urogynecol J. 2019;30(9):1457–63. https://doi.org/10.1007/s00192-019-04006-8.

    Article  Google Scholar 

  111. Rodrigues AA Jr, Bassaly R, McCullough M, Terwilliger HL, Hart S, Downes K, et al. Levator ani subtended volume: a novel parameter to evaluate levator ani muscle laxity in pelvic organ prolapse. Am J Obstet Gynecol. 2012;206(3):244.e1–9. https://doi.org/10.1016/j.ajog.2011.10.001.

    Article  Google Scholar 

  112. Rodrigues Junior AA, Herrera-Hernadez MC, Bassalydo R, McCullough M, Terwilliger HL, Downes K, Hoyte L. Estimates of the levator ani subtended volume based on magnetic resonance linear measurements. Neurourol Urodyn. 2016;35(2):199–205. https://doi.org/10.1002/nau.22691.

    Article  Google Scholar 

  113. Cheng W, Thibault MD, Chen L, DeLancey JOL, Swenson CW. Changes in cardinal ligament length and curvature with parity and prolapse and their relation to level III hiatus measures. Int Urogynecol J. 2022;33(1):107–14. https://doi.org/10.1007/s00192-021-04824-9.

    Article  Google Scholar 

  114. Araujo CC, Coelho SSA, Martinho N, Tanaka M, Jales RM, Juliato CRT. Clinical and ultrasonographic evaluation of the pelvic floor in primiparous women: a cross-sectional study. Int Urogynecol J. 2018;29(10):1543–9. https://doi.org/10.1007/s00192-018-3581-y.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Sarah Block for assistance with manuscript preparation.

Funding

Drs. Ashton-Miller and DeLancey were supported by NIH Grant RC2 DK122379. Dr. Chen was supported by NIH Grant R01 HD094954.

Author information

Authors and Affiliations

Authors

Contributions

W. Cheng: literature review, data collecting, data analysis, manuscript writing and editing; E. English: literature review, data collecting, manuscript writing and editing; W. Horner: literature review, manuscript writing and editing; C.W. Swenson: literature review, manuscript writing and editing; L. Chen: literature review, manuscript editing; F. Pipitone: literature review, manuscript editing; J.A. Ashton-Miller: literature review, manuscript editing; J.O. DeLancey: literature review, data analysis, manuscript writing and editing.

Corresponding author

Correspondence to Wen** Cheng.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 311 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., English, E., Horner, W. et al. Hiatal failure: effects of pregnancy, delivery, and pelvic floor disorders on level III factors. Int Urogynecol J 34, 327–343 (2023). https://doi.org/10.1007/s00192-022-05354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-022-05354-8

Keywords

Navigation