Log in

Rapid calibration of HY-2A satellite-borne microwave radiometer using coastal GNSS observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Satellite-borne microwave radiometers provide wet tropospheric correction (WTC) for altimetry observations, which is critical to high-accuracy sea surface height (SSH) measurements. However, it was reported that the Haiyang-2A (HY-2A) calibration microwave radiometer (CMR) experienced abrupt 18.7 GHz band failure. The global navigation satellite system (GNSS) can provide (near) real-time accurate WTC with high temporal resolutions. In this study, GNSS observations of 132 global coastal sites from January 2017 to February 2018 are used for CMR validation and calibration. In addition, the European Centre for Medium-Range Weather Forecasts (ECMWF) products during the same period are also used for comparison. After calibration with GNSS observations, the root-mean-square (RMS) of the WTC differences between CMR and ECMWF decreases from 2.53 to 1.66 cm. After calibration with ECMWF products, the RMS of the WTC differences between ECMWF-calibrated CMR and ECMWF is 1.54 cm. Moreover, different processing strategies of WTC are applied to SSH measurements. The mean sea level anomaly (SLA) values of SSH obtained with ECMWF-calibrated CMR are comparable to those obtained with GNSS-calibrated CMR WTC and with ECMWF WTC. In addition, compared to the SLAs of Jason-3, the SLAs of HY-2A obtained with ECMWF WTC show the smallest differences of 7.79 cm in RMS, which are 0.1 cm smaller than those obtained with ECMWF-calibrated CMR WTC and 0.23 cm smaller than those obtained with GNSS-calibrated CMR WTC. The SLAs obtained with original CMR WTC are reduced by approximately 0.8 cm in RMS after using GNSS-calibrated CMR WTC. Therefore, even with the known limitations of ground-based GNSS (non-collocated measurements over land instead of over ocean), it can indeed serve as a valuable WTC source for radiometer calibration due to the lower latency of GNSS observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Coastal GNSS original observations are available at http://cddis.nasa.gov/archive/gnss/data, VMF3 WTC data are available at http://vmf.geo.tuwien.ac.at, and the GNSS ZWD, VMF3 WTC and HY-2A CMR data in crossover points are available at http://igmas.users.sgg.whu.edu.cn/group/tool/11. The HY-2A dataset is also available upon reasonable request from the corresponding author.

References

  • Bao L, Gao P, Peng H, Jia Y, Shum C, Lin M, Guo Q (2015) First accuracy assessment of the HY-2A altimeter sea surface height observations: cross-calibration results. Adv Space Res 55:90–105

    Article  Google Scholar 

  • Beckley B, Callahan P, Hancock D III, Mitchum G, Ray R (2017) On the “Cal-Mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. J Geophys Res: Oceans 122:8371–8384. https://doi.org/10.1002/2017JC013090

    Article  Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res: Atmospheres 97:15787–15801. https://doi.org/10.1029/92JD01517

    Article  Google Scholar 

  • Biancamaria S et al (2018) Validation of Jason-3 tracking modes over French rivers. Remote Sens Environ 209:77–89

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geodesy 81:679–683

    Article  Google Scholar 

  • Brown S (2013) Maintaining the long-term calibration of the Jason-2/OSTM advanced microwave radiometer through intersatellite calibration. IEEE Trans Geosci Remote Sens 51:1531–1543. https://doi.org/10.1109/TGRS.2012.2213262

    Article  Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. Geophys Res Lett 30:1275. https://doi.org/10.1029/2002GL016473

    Article  Google Scholar 

  • Cartwright D, Edden AC (1973) Corrected tables of tidal harmonics. Geophys J Int 33:253–264. https://doi.org/10.1111/j.1365-246X.1973.tb03420.x

    Article  Google Scholar 

  • Cazenave A, Dieng H-B, Meyssignac B, Von Schuckmann K, Decharme B, Berthier E (2014) The rate of sea-level rise nature. Clim Change 4:358. https://doi.org/10.1038/nclimate2159

    Article  Google Scholar 

  • Cui W, Wang W, Jie Z, Yang J, Jia Y (2018) Improvement of sea surface height measurements of HY-2A satellite altimeter using Jason-2. Mar Geodesy 41:632–648

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system quarterly. J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Desai SD, Haines BJ (2004) Monitoring measurements from the Jason-1 microwave radiometer and independent validation with GPS. Mar Geodesy 27:221–240

    Article  Google Scholar 

  • Gaspar P, Ogor F, Le Traon PY, Zanife OZ (1994) Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences. J Geophys Res: Oceans 99:24981–24994. https://doi.org/10.1029/94JC01430

    Article  Google Scholar 

  • Gendt G, Dick G, Reigber C, Tomassini M, Liu Y, Ramatschi M (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Jpn Ser II(82):361–370. https://doi.org/10.2151/jmsj.2004.361

    Article  Google Scholar 

  • Haines BJ, Bar-Sever YE (1998) Monitoring the TOPEX microwave radiometer with GPS: Stability of columnar water vapor measurements. Geophys Res Lett 25:3563–3566

    Article  Google Scholar 

  • Jiang X, Lin M, Liu J, Zhang Y, **e X, Peng H, Zhou W (2012) The HY-2 satellite and its preliminary assessment. Int J Digital Earth 5:266–281

    Article  Google Scholar 

  • Keihm SJ, Janssen MA, Ruf CS (1995) TOPEX/Poseidon microwave radiometer (TMR). III wet troposphere range correction algorithm and pre-launch error budget. IEEE Trans Geosci Remote Sens 33:147–161. https://doi.org/10.1109/36.368213

    Article  Google Scholar 

  • Kouba J (2008) Implementation and testing of the gridded Vienna Map** Function 1 (VMF1). J Geodesy 82:193–205

    Article  Google Scholar 

  • Labroue S, Gaspar P, Dorandeu J, Zanife O, Mertz F, Vincent P, Choquet D (2004) Nonparametric estimates of the sea state bias for the Jason-1 radar altimeter. Mar Geodesy 27:453–481

    Article  Google Scholar 

  • Landskron D, Böhm J (2018) VMF3/GPT3: refined discrete and empirical troposphere map** functions. J Geodesy 92:349–360

    Article  Google Scholar 

  • Landskron D, Böhm J, Klügel T, Schüler T (2019) Comparing atmospheric data and models at station Wettzell during CONT17. Adv Geosci 50:1–7

    Article  Google Scholar 

  • Li X et al (2015) Retrieving of atmospheric parameters from multi-GNSS in real time: validation with water vapor radiometer and numerical weather model. J Geophys Res: Atmospheres 120:7189–7204

    Article  Google Scholar 

  • Li X, Tan H, Li X, Dick G, Wickert J, Schuh H (2018) Real-time sensing of precipitable water vapor from BeiDou observations: Hong Kong and CMONOC networks. J Geophys Res: Atmospheres 123:7897–7909

    Google Scholar 

  • Liu LY, Chen G, Wu Z (2019) Evaluation of HY-2A satellite-borne water vapor radiometer with shipborne GPS and GLONASS observations over the Indian Ocean. GPS Solut 23:87

    Article  Google Scholar 

  • Maiwald F et al (2016) Reliable and stable radiometers for Jason-3. IEEE J Select Topics Appl Earth Observ Remote Sens 9:2754–2762

    Article  Google Scholar 

  • NSOAS (2011) HY-2A Calibration Microwave Radiometer Data User's Handbook 2011[EB/OL][2012–05]

  • Obligis E, Rahmani A, Eymard L, Labroue S, Bronner E (2009) An improved retrieval algorithm for water vapor retrieval: application to the envisat microwave radiometer. IEEE Trans Geosci Remote Sens 47:3057–3064. https://doi.org/10.1109/tgrs.2009.2020433

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions (2010) IERS Tech Note 36. Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am Main

  • Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys Res: Oceans 118:4570–4584

    Article  Google Scholar 

  • Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. 2. In: NASA Technical Memo. 209478. Goddard Space Flight Center, Greenbelt, p 58

  • Ruf CS (2002) Characterization and correction of a drift in calibration of the TOPEX microwave radiometer. IEEE Trans Geosci Remote Sens 40:509–511. https://doi.org/10.1109/36.992824

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Artif Satellites Geodesy 15:247–251. https://doi.org/10.1029/GM015p0247

    Article  Google Scholar 

  • Schaeffer P, Pujol M, Faugère Y, Picot N, Guillot A (2016) New mean sea surface CNES_CLS 2015 focusing on the use of geodetic missions of Cryosat-2 and Jason-1. In: OSTST 2016 meeting, La Rochelle, France

  • Sibthorpe A, Brown S, Desai SD, Haines BJ (2011) Calibration and validation of the Jason-2/OSTM advanced microwave radiometer using terrestrial GPS stations. Mar Geodesy 34:420–430

    Article  Google Scholar 

  • Vieira T, Fernandes MJ, Lázaro C (2018) Independent assessment of on-board microwave radiometer measurements in coastal zones using tropospheric delays from gnss. IEEE Trans Geosci Remote Sens 57:1804–1816. https://doi.org/10.1109/TGRS.2018.2869258

    Article  Google Scholar 

  • Wahr JM (1985) Deformation induced by polar motion. J Geophys Res: Solid Earth 90:9363–9368. https://doi.org/10.1029/JB090iB11p09363

    Article  Google Scholar 

  • Wang J, Zhang J, Fan C, Wang J (2014) Validation of the “HY-2” altimeter wet tropospheric path delay correction based on radiosonde data. Acta Oceanol Sin 33:48–53

    Article  Google Scholar 

  • Wang J et al (2019) Retrieving precipitable water vapor from shipborne multi-GNSS observations. Geophys Res Lett 46:5000–5008. https://doi.org/10.1029/2019GL082136

    Article  Google Scholar 

  • Wang, ZD (2008) Simulation on retrieving of atmospheric wet path delay by microwave radiometer on HY-2 satellite. In: Microwave Conference, 2008 China-Japan Joint, 2008. IEEE, pp 665–668. https://doi.org/10.1109/CJMW.2008.4772517

  • Wu J-T, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geodaet 18:91–98

    Google Scholar 

  • Wu Z, Wang J, Liu Y, He X, Liu Y, Xu W (2019) Validation of 7 years in-flight HY-2A calibration microwave radiometer products using numerical weather model and radiosondes. Remote Sens 11:1616. https://doi.org/10.3390/rs11131616

    Article  Google Scholar 

  • Wu Z, Liu Y, Liu Y, Wang J, He X, Xu W, Ge M (2021) Calibrating the Haiyang-2A calibration microwave radiometer when the 18.7-GHz band fails. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2021.3073278

    Article  Google Scholar 

  • Yang L, Zhou X, Lin M, Lei N, Mu B, Zhu L (2016) Global statistical assessment of HY-2A altimeter IGDR data. Progr Geophys 31:629–636

    Google Scholar 

  • Zhang D, Wang Z, Li Y, Zhao J, Liu Y (2015) Preliminary analysis of HY-2 ACMR data. In: Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, Milan, Italy, 2015. IEEE, pp 177–180. https://doi.org/10.1109/IGARSS.2015.7325728

  • Zhao J, Zhang D, Wang Z, Li Y (2016) The validation of HY-2A ACMR retrieval algorithms and product. In: Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, Bei**g, China, 2016. IEEE, pp 411–413

  • Zheng G, Yang J, Ren L, Zhou W, Huang L (2014) The preliminary cross-calibration of the HY-2A calibration microwave radiometer with the Jason-1/2 microwave radiometers. Int J Remote Sens 35:4515–4531

    Article  Google Scholar 

  • Zhu L, Yang L, Xu Y, Zhang H, Wu Z, Wang Z (2021) Independent validation of Jason-2/3 and HY-2B microwave radiometers using chinese coastal GNSS. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2021.3106650

    Article  Google Scholar 

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res: Solid Earth 102:5005–5017. https://doi.org/10.1029/96JB03860

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank NSOAS for providing the HY-2A data, TU Wien for providing the VMF3 grid data, IGS for providing the GNSS observations and GFZ for providing the precise orbit and clock products. Dynamic atmospheric corrections are produced by CLS using the Mog2D model from Legos and distributed by Aviso+, MSS_CNES_CLS15 is produced by CLS and distributed by Aviso+ with support from CNES, and Jason-3 GDR is distributed by Aviso+ with support from CNES. This research is supported by the National Natural Science Foundation of China (41876106, 41974029 and 42004030), the National Key R&D Program of China (2021YFC3000504 and 2020YFB0505805), Fundamental Research Funds for the Central Universities (2042021kf0005), Wenhai Program of Qingdao National Laboratory for Marine Science and Technology (2021WHZZB1002) and the Fellowship of China Postdoctoral Science Foundation (2020M682481). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

Z.W., YX.L. and Y.L. provided the initial idea and designed the experiments for this study; Z.W., YX.L., Y.L., C. L. and X. H. analyzed the data and wrote the manuscript; K. J., W. X. helped with the writing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, Y., Liu, Y. et al. Rapid calibration of HY-2A satellite-borne microwave radiometer using coastal GNSS observations. J Geod 96, 24 (2022). https://doi.org/10.1007/s00190-022-01617-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-022-01617-w

Keywords

Navigation