Log in

Gibbs sampler by sampling-importance-resampling

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Among the Markov chain Monte Carlo methods, the Gibbs sampler has the advantage that it samples from the conditional distributions for each unknown parameter, thus decomposing the sample space. In the case the conditional distributions are not tractable, the Gibbs sampler by means of sampling-importance-resampling is presented here. It uses the prior density function of a Bayesian analysis as the importance sampling distribution. This leads to a fast convergence of the Gibbs sampler as demonstrated by the smoothing with preserving the edges of 3D images of emission tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alenius S, Ruotsalainen U (1997) Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 24: 258–265

    Google Scholar 

  • Alkhatib H, Schuh W-D (2006) Integration of the Monte Carlo covariance estimation strategy into tailored solution procedures for large-scale least squares problems. J Geod 81:53–66

    Article  Google Scholar 

  • Besag JE (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48:259–302

    Google Scholar 

  • Devroye L (1986) Non-uniform random variate generation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Donoho DL, Huber PJ (1983) The notion of breakdown point. In: Bickel PJ, Doksum KA, Hodges JL Jr (eds) A festschrift for Erich Lehmann. Wadsworth, Belmont, pp 157–184

    Google Scholar 

  • Doucet A, Godsill S, Andrieu C (2000) On sequential Monte Marlo sampling methods for Bayesian filtering. Stat Comput 10: 197–208

    Article  Google Scholar 

  • Fessler JA, Erdogan H, Wu WB (2000) Exact distribution of edge-preserving map estimators for linear signal models with Gaussian measurement noise. IEEE Trans Image Process 9(6): 1049–1056

    Article  Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  Google Scholar 

  • Gelfand AE, Smith AFM, Lee T (1992) Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J Am Stat Assoc 87:523–532

    Article  Google Scholar 

  • Gelfand AE, Sahu SK, Carlin BP (1995) Efficient parametrisations for normal linear mixed models. Biometrika 82:479–488

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd ed. Chapman and Hall, Boca Raton

    Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Machine Intell PAMI 6:721–741

    Article  Google Scholar 

  • Geman S, McClure DE (1987) Statistical methods for tomographic image reconstruction. Bull Int Stat Inst 52-21.1:5–21

    Google Scholar 

  • Geman D, Geman S, Graffigne C (1987) Locating texture and object boundaries. In: Devijver PA, Kittler J (eds) Pattern recognition theory and applications. Springer, Berlin Heidelberg NewYork, pp 165–177

    Google Scholar 

  • Givens GH, Raftery AF (1996) Local adaptive importance sampling for multivariate densities with strong nonlinear relationships. J Am Stat Assoc 91:132–141

    Article  Google Scholar 

  • Gordon N, Salmond D (1995) Bayesian state estimation for tracking and guidance using the bootstrap filter. J Guid Control Dyn 18:1434–1443

    Google Scholar 

  • Green PJ (1990) Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9:84–93

    Article  Google Scholar 

  • Gundlich B, Koch KR, Kusche J (2003) Gibbs sampler for computing and propagating large covariance matrices. J Geod 77:514–528

    Article  Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  Google Scholar 

  • Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koch KR (2000a) Einführung in die Bayes-Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Koch KR (2000b) Numerische Verfahren in der Bayes-Statistik. Z Vermess 125:408–414

    Google Scholar 

  • Koch (2005a) Bayesian image restoration by Markov chain Monte Carlo methods. ZfV–Z Geodäsie Geoinf Landmanag 130: 318–324

    Google Scholar 

  • Koch KR (2005b) Determining the maximum degree of harmonic coefficients in geopotential models by Monte Carlo methods. Stud Geophys Geod 49:259–275

    Article  Google Scholar 

  • Koch (2006) ICM algorithm for the Bayesian reconstruction of tomographic images. Photogramm Fernerkund Geoinf 2006(3):229–238

    Google Scholar 

  • Koch KR, Schmidt M (1994) Deterministische und stochastische Signale. Dümmler, Bonn

    Google Scholar 

  • Koch KR, Kusche J, Boxhammer C, Gundlich B (2004) Parallel Gibbs sampling for computing and propagating large covariance matrices. ZfV–Z Geodäsie Geoinf Landmanag 129:32–42

    Google Scholar 

  • Köster M (1995) Kontextsensitive Bildinterpretation mit Markoff–Zufallsfeldern. Reihe C, 444. Deutsche Geodätische Kommission, München

  • Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8: 306–316

    Google Scholar 

  • Lange K, Bahn M, Little R (1987) A theoretical study of some maximum likelihood algorithms for emission and transmission tomography. IEEE Trans Med Imaging MI-6:106–114

    Article  Google Scholar 

  • Leahy RM, Qi J (2000) Statistical approaches in quantitative positron emission tomography. Stat Comput 10:147–165

    Article  Google Scholar 

  • Liu JS (2001) Monte Carlo strategies in scientific computing. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Liu JS, Sabatti C (2000) Generalized Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87: 353–369

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth ML, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092

    Article  Google Scholar 

  • Modestino JW, Zhang J (1992) A Markov random field model-based approach to image interpretation. IEEE Trans Pattern Anal Mach Intell 14:606–615

    Article  Google Scholar 

  • Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH (1998) High-resolution 3d Bayesian image reconstruction using the micropet small-animal scanner. Phys Med Biol 43:1001–1013

    Article  Google Scholar 

  • Rubin DB (1988) Using the SIR algorithm to simulate posterior distributions. In: Bernardo JM, DeGroot MH, Lindley DV, Smith AFM (eds) Bayesian statistics, Vol 3.Oxford University Press, Oxford, pp 395–402Vol 3.Oxford University Press, Oxford, pp 395–402

  • Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging MI-1: 113–122

    Google Scholar 

  • Siddon RL (1985) Fast calculation of the exact radiological path for a three-dimensional ct array. Med Phys 12:252–255

    Article  Google Scholar 

  • Skare O, Bolviken E, Holden L (2003) Improved sampling-importance resampling and reduced bias importance sampling. Scand J Stat 30:719–737

    Article  Google Scholar 

  • Smith AFM, Gelfand AE (1992) Bayesian statistics without tears: a sampling–resampling perspective. Am Stat 46:84–88

    Article  Google Scholar 

  • Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods. J R Stat Soc B 55:3–23

    Google Scholar 

  • Verdinelli I, Wasserman L (1991) Bayesian analysis of outlier problems using the Gibbs sampler. Stat Comput 1:105–117

    Article  Google Scholar 

  • Wang W, Gindi G (1997) Noise analysis of MAP–EM algorithms for emission tomography. Phys Med Biol 42:2215–2232

    Article  Google Scholar 

  • Xu P (1999) Biases and accuracy of, and an alternative to, discrete nonlinear filters. J Geod 73:35–46

    Article  Google Scholar 

  • Xu P (2003) Nonlinear filtering of continuous systems: foundational problems and new results. J Geod 77:247–256

    Article  Google Scholar 

  • Ziemons K, Auffray E, Barbier R, Brandenburg G, Bruyndonckx P, Choi Y, Christ D, Costes N, Declais Y, Devroede O, Dujardin C, Federovd A, Heinrichs U, Korjik M, Krieguer M, Kuntner C, Largeron G, Lartizien C, Larue H, Lecoq P, Leonard S, Marteau J, Morel Ch, Mosset JB, Parl Ch, Pedrini Ch, Petrosyan AG, Pietrzyk U, Rey M, Saladino S, Sappey-Marinier D, Simon L, Streun M, Tavernier S, Vieira JM (2005) The ClearPETTM project: development of a 2nd generation high-performance small animal pet scanner. Nuclear Instruments Methods Phys Res A 537:307–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, K.R. Gibbs sampler by sampling-importance-resampling. J Geod 81, 581–591 (2007). https://doi.org/10.1007/s00190-006-0121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0121-1

Keywords

Navigation