Log in

Electrophoretic deposition of graphene coating on copper for improved thermoelectric performance of wire rods

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Power transmission and transformation are important parts of power distribution, which is increasingly necessary in modern society; this is particularly important due to the green transition. Consequently, increasing the efficiency of power transformers is a priority to improve the economic and environmental aspects of electrical transformation. Lightweight graphene coatings on transformer wire rods represent a valid solution improving thermoelectrical performances. In this work, a graphene coating was applied by electrophoretic deposition to copper wire rods through a sustainable deposition bath, studying the impact of the deposition current density. The morphology of the coated wire rods, the adhesion of the coating to the substrate, and their thermoelectric properties were evaluated. This work demonstrates the application of EPD to coat copper wire rods with graphene, resulting in a 5.58% reduction in electrical resistivity and an 88% enhancement in thermal performance. In addition, relationships between coating performances and deposition parameters were highlighted. An analysis of variation (ANOVA) confirmed the main role of the current density on the examined outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Lu K (1979) (2010) The Future of Metals. Science 328:319–320. https://doi.org/10.1126/science.1185866

    Article  Google Scholar 

  2. Elshkaki A, Graedel TE, Ciacci L, Reck BK (2016) Copper demand, supply, and associated energy use to 2050. Glob Environ Chang 39:305–315. https://doi.org/10.1016/j.gloenvcha.2016.06.006

    Article  Google Scholar 

  3. Susa D, Lehtonen M, Nordman H (2005) Dynamic thermal modelling of power transformers. IEEE Trans Power Delivery 20:197–204. https://doi.org/10.1109/TPWRD.2004.835255

    Article  Google Scholar 

  4. Pillai AS, Linsely A (2024) Effect of copper as a catalyst on the dielectric properties of insulating oils used in transformers. Int J Adv Manuf Technol 130:147–162. https://doi.org/10.1007/s00170-023-12475-x

    Article  Google Scholar 

  5. Oparanti SO, Khaleed AA, Abdelmalik AA (2021) AC breakdown analysis of synthesized nanofluids for oil-filled transformer insulation. Int J Adv Manuf Technol 117:1395–1403. https://doi.org/10.1007/s00170-021-07631-0

    Article  Google Scholar 

  6. Nedjah N, Mourelle L de M, dos Santos RA, dos Santos LTB (2022) Sustainable maintenance of power transformers using computational intelligence. Sustain Technol Entrep 1 100001 https://doi.org/10.1016/j.stae.2022.100001

  7. Kgoete FM, Uyor UO, Popoola AP, Popoola O (2024) Insight on the recent materials advances for manufacturing of high-voltage transmission conductors. Int J Adv Manuf Technol 130:4123–4136. https://doi.org/10.1007/s00170-023-12890-0

    Article  Google Scholar 

  8. Fernández I, Ortiz A, Delgado F et al (2013) Comparative evaluation of alternative fluids for power transformers. Electric Power Systems Research 98:58–69. https://doi.org/10.1016/j.epsr.2013.01.007

    Article  Google Scholar 

  9. Allahbakhshi M, Akbari M (2016) Heat analysis of the power transformer bushings using the finite element method. Appl Therm Eng 100:714–720. https://doi.org/10.1016/j.applthermaleng.2016.02.065

    Article  Google Scholar 

  10. Sainudeen SS, Joseph A, Joseph M, Sajith V (2022) Heat transfer phenomena of copper-graphene nanocomposite coated aluminium heat spreaders: an interferometric study. Appl Therm Eng 212:118545. https://doi.org/10.1016/j.applthermaleng.2022.118545

    Article  Google Scholar 

  11. Yang H, Ma Z, Lei C et al (2020) High strength and high conductivity Cu alloys: a review. Sci China Technol Sci 63:2505–2517. https://doi.org/10.1007/s11431-020-1633-8

    Article  Google Scholar 

  12. Mao Q, Zhang Y, Guo Y, Zhao Y (2021) Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire. Commun Mater 2:46. https://doi.org/10.1038/s43246-021-00150-1

    Article  Google Scholar 

  13. Huang W, Yu H, Wang L et al (2023) State of the art and prospects in sliver- and copper-matrix composite electrical contact materials. Mater Today Commun 37:107256. https://doi.org/10.1016/j.mtcomm.2023.107256

    Article  Google Scholar 

  14. Janas D, Liszka B (2018) Copper matrix nanocomposites based on carbon nanotubes or graphene. Mater Chem Front 2:22–35. https://doi.org/10.1039/C7QM00316A

    Article  Google Scholar 

  15. Jia SQ, Yang F (2021) High thermal conductive copper/diamond composites: state of the art. J Mater Sci 56:2241–2274. https://doi.org/10.1007/s10853-020-05443-3

    Article  Google Scholar 

  16. Abyzov AM, Kidalov SV, Shakhov FM (2012) High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl Therm Eng 48:72–80. https://doi.org/10.1016/j.applthermaleng.2012.04.063

    Article  Google Scholar 

  17. Sundaram RM, Sekiguchi A, Sekiya M et al (2018) Copper/carbon nanotube composites: research trends and outlook. R Soc Open Sci 5:180814. https://doi.org/10.1098/rsos.180814

    Article  Google Scholar 

  18. Cho S, Kikuchi K, Miyazaki T et al (2010) Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites. Scr Mater 63:375–378. https://doi.org/10.1016/j.scriptamat.2010.04.024

    Article  Google Scholar 

  19. Sang M, Shin J, Kim K, Yu K (2019) Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 9:374. https://doi.org/10.3390/nano9030374

    Article  Google Scholar 

  20. Ali S, Ahmad F, Yusoff PSMM et al (2021) A review of graphene reinforced Cu matrix composites for thermal management of smart electronics. Compos Part A Appl Sci Manuf 144:106357. https://doi.org/10.1016/j.compositesa.2021.106357

    Article  Google Scholar 

  21. Wang H, Zhang Z-H, Zhang H-M et al (2017) Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Mater Sci Eng A 696:80–89. https://doi.org/10.1016/j.msea.2017.04.055

    Article  Google Scholar 

  22. Zarei F, Sheibani S (2021) Comparative study on carbon nanotube and graphene reinforced Cu matrix nanocomposites for thermal management applications. Diam Relat Mater 113:108273. https://doi.org/10.1016/j.diamond.2021.108273

    Article  Google Scholar 

  23. Kappagantula KS, Smith JA, Nittala AK, Kraft FF (2022) Macro copper-graphene composites with enhanced electrical conductivity. J Alloys Compd 894:162477. https://doi.org/10.1016/j.jallcom.2021.162477

    Article  Google Scholar 

  24. Bharat N, Bose PSC (2022) An overview of production technologies and its application of metal matrix composites. Adv Mater Process Technol 8:1946–1962. https://doi.org/10.1080/2374068X.2021.1878707

    Article  Google Scholar 

  25. Essien U, Vaudreuil S (2022) Issues in metal matrix composites fabricated by laser powder bed fusion technique: a review. Adv Eng Mater 24. https://doi.org/10.1002/adem.202200055

  26. Sankhla A, Patel KM (2022) Metal matrix composites fabricated by stir casting process–a review. Adv Mater Process Technol 8:1270–1291. https://doi.org/10.1080/2374068X.2020.1855404

    Article  Google Scholar 

  27. Almonti D, Simoncini M, Tagliaferri V, Ucciardello N (2018) Electro-deposition of graphene nanoplatelets on CPU cooler—experimental and numerical investigation. Mater Manuf Processes 33:220–226. https://doi.org/10.1080/10426914.2017.1303165

    Article  Google Scholar 

  28. Di Siena M, Genna S, Guarino S, Ucciardello N (2023) Study of the electroplating process parameters on the electrical resistance of an aluminium alloy with a Cu-graphene-based coating. Surf Eng 39:90–101. https://doi.org/10.1080/02670844.2023.2194500

    Article  Google Scholar 

  29. Javidjam A, Hekmatshoar MH, Hedayatifar L, Abad SNK (2018) Effect of surface roughness on electrical conductivity and hardness of silver plated copper. Mater Res Express 6:036407. https://doi.org/10.1088/2053-1591/aaf4c5

    Article  Google Scholar 

  30. Ren F, Yin L, Wang S et al (2013) Cyanide-free silver electroplating process in thiosulfate bath and microstructure analysis of Ag coatings. Trans Nonferrous Met Soc China 23:3822–3828. https://doi.org/10.1016/S1003-6326(13)62935-0

    Article  Google Scholar 

  31. Guarino S, Ucciardello N, Venettacci S, Genna S (2017) Life cycle assessment of a new graphene-based electrodeposition process on copper components. J Clean Prod 165:520–529. https://doi.org/10.1016/j.jclepro.2017.07.168

    Article  Google Scholar 

  32. Mattevi C, Kim H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334. https://doi.org/10.1039/C0JM02126A

    Article  Google Scholar 

  33. Pan C, Gaur APS, Lynn M, et al (2022) Enhanced electrical conductivity in graphene–copper multilayer composite. AIP Adv 12 https://doi.org/10.1063/5.0073879

  34. Karfa P, Majhi KC, Madhuri R (2020) Synthesis of two-dimensional nanomaterials. Two-Dimensional Nanostructures for Biomedical Technology 35–71

  35. Diba M, Fam DWH, Boccaccini AR, Shaffer MSP (2016) Electrophoretic deposition of graphene-related materials: a review of the fundamentals. Prog Mater Sci 82:83–117. https://doi.org/10.1016/j.pmatsci.2016.03.002

    Article  Google Scholar 

  36. Van Tassel JJ, Randall CA (2006) Mechanisms of electrophoretic deposition. Key Eng Mater 314:167–174. https://doi.org/10.4028/www.scientific.net/KEM.314.167

    Article  Google Scholar 

  37. Baiocco G, Salvi D, Ucciardello N (2024) Sustainable coating solutions: a comparative life cycle analysis of electrophoretic deposition and electroplating for graphene-reinforced anti-wear coatings. Int J Adv Manuf Technol 130:3341–3354. https://doi.org/10.1007/s00170-023-12796-x

    Article  Google Scholar 

  38. Bhoskar A, Kalyankar V (2024) Effect of powder feed rate on the structure and properties of plasma deposited Stellite 6 cladding on SS316L stainless steel substrate. Met Sci Heat Treat 65:691–697. https://doi.org/10.1007/s11041-024-00991-w

    Article  Google Scholar 

  39. Kalyankar V, Bhoskar A (2021) Influence of torch oscillation on the microstructure of Colmonoy 6 overlay deposition on SS304 substrate with PTA welding process. Metall Res Technol 118:406. https://doi.org/10.1051/metal/2021045

    Article  Google Scholar 

  40. Bhoskar A, Kalyankar V, Deshmukh D (2023) Metallurgical characterisation of multi-track Stellite 6 coating on SS316L substrate. Can Metall Q 62:665–677. https://doi.org/10.1080/00084433.2022.2149009

    Article  Google Scholar 

  41. Kalyankar V, Bhoskar A, Deshmukh D, Patil S (2022) On the performance of metallurgical behaviour of Stellite 6 cladding deposited on SS316L substrate with PTAW process. Can Metall Q 61:130–144. https://doi.org/10.1080/00084433.2022.2031681

    Article  Google Scholar 

  42. Chavez-Valdez A, Shaffer MSP, Boccaccini AR (2013) Applications of graphene electrophoretic deposition A review. J Phys Chem B 117:1502–1515. https://doi.org/10.1021/jp3064917

    Article  Google Scholar 

  43. Park JH, Park JM (2014) Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application. Surf Coat Technol 254:167–174. https://doi.org/10.1016/j.surfcoat.2014.06.007

    Article  Google Scholar 

  44. Singh BP, Nayak S, Nanda KK et al (2013) The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon N Y 61:47–56. https://doi.org/10.1016/j.carbon.2013.04.063

    Article  Google Scholar 

  45. Hares E, El-Shazly AH, El-Kady MF, Hammad AS (2019) Enhancing the hydrophobicity of a copper pipe by electrophoretic deposition of graphene oxide. Key Eng Mater 801:153–159. https://doi.org/10.4028/www.scientific.net/KEM.801.153

    Article  Google Scholar 

  46. Bo L, Liu X, Wang D (2022) Electrophoretic deposition of graphene coating as a corrosion inhibitor for copper in NaCl solution. Results Surf Interfaces 8:100077. https://doi.org/10.1016/j.rsurfi.2022.100077

    Article  Google Scholar 

  47. Baiocco G, Genna S, Salvi D, Ucciardello N (2023) Laser texturing to increase the wear resistance of an electrophoretic graphene coating on copper substrates. Materials 16:5359. https://doi.org/10.3390/ma16155359

    Article  Google Scholar 

  48. Lee V, Whittaker L, Jaye C et al (2009) Large-area chemically modified graphene films: electrophoretic deposition and characterization by soft X-ray absorption spectroscopy. Chem Mater 21:3905–3916. https://doi.org/10.1021/cm901554p

    Article  Google Scholar 

  49. Baiocco G, Menna E, Salvi D, Ucciardello N (2024) Investigating tribological properties of electrophoretically deposited graphene nanoplatelets coatings on mild steel. Thin Solid Films 793:140279. https://doi.org/10.1016/j.tsf.2024.140279

    Article  Google Scholar 

  50. Shen B, Hong H, Chen S et al (2019) Cathodic electrophoretic deposition of magnesium nitrate modified graphene coating as a macro-scale solid lubricant. Carbon N Y 145:297–310. https://doi.org/10.1016/j.carbon.2019.01.046

    Article  Google Scholar 

  51. Kargar F, Barani Z, Salgado R et al (2018) Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl Mater Interfaces 10:37555–37565. https://doi.org/10.1021/acsami.8b16616

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Gabriele Baiocco: writing—review and editing, methodology, formal analysis, conceptualization; Silvio Genna: methodology, formal analysis, investigation, project administration, conceptualization, writing—review and editing; Daniel Salvi: writing—review and editing, writing—original draft, methodology, investigation, formal analysis, conceptualization; Nadia Ucciardello: supervision, resources, project administration, funding acquisition, conceptualization.

Corresponding author

Correspondence to Daniel Salvi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baiocco, G., Genna, S., Salvi, D. et al. Electrophoretic deposition of graphene coating on copper for improved thermoelectric performance of wire rods. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-14042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-14042-4

Keywords

Navigation