Log in

Effects of process parameters on properties of friction stir additive manufactured copper

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article investigated the effects of friction stir additive manufacturing (FSAM) process parameters on the microstructure and mechanical properties of  copper. The FSAM tool plunge depth, tilt angle, and rotational and traverse velocities are considered as variables. Material flow, internal defects, hardness, and mechanical properties are analyzed on FSAM samples. The results show that the FSAM of copper is very sensitive to process parameters, and incomplete deposition can happen during FASM with inappropriate process parameters. The microstructure of the printed layer tolerates a thermo-mechanical cycle during the process and reheating after depositing new layers. In the center of the print, an ultra-fine grained zone formed called the re-stirring area. The highest strength printed sample achieved at 3° degree tool tilt, 0.25-mm plunge depth, 2000-rpm rotation, and 16-mm/min traverse speed that has ~85-HV hardness and 205-MPa tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Derazkola HA, Khodabakhshi F, Gerlich AP (2020) Friction-forging tubular additive manufacturing (FFTAM): a new route of solid-state layer-upon-layer metal deposition. J Mater Res Technol 9(6):15273–15285. http://www.sciencedirect.com/science/article/pii/S2238785420319645. Accessed 25 Jun 2023

  2. Derazkola HA, Khodabakhshi F, Gerlich AP (2020) Fabrication of a nanostructured high strength steel tube by friction-forging tubular additive manufacturing (FFTAM) technology. J Manuf Process 58:724–735. http://www.sciencedirect.com/science/article/pii/S1526612520305818. Accessed 25 Jun 2023

  3. Kar A, Kumar S, Kailas SV (2023) Develo** multi-layered 3D printed homogenized structure using solid state deposition method. Mater Charact 199:112770. https://www.sciencedirect.com/science/article/pii/S1044580323001274. Accessed 25 Jun 2023

  4. Gopan V, Leo Dev Wins K, Surendran A (2021) Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: a review. CIRP J Manuf Sci Technol 32:228–248. https://www.sciencedirect.com/science/article/pii/S1755581720301772. Accessed 25 Jun 2023

    Article  Google Scholar 

  5. Mishra RS, Haridas RS, Agrawal P (2022) Friction stir-based additive manufacturing. Sci Technol Weld Join 27(3):141–165. https://doi.org/10.1080/13621718.2022.2027663

    Article  Google Scholar 

  6. Rathee S, Srivastava M, Pandey PM, Mahawar A, Shukla S (2021) Metal additive manufacturing using friction stir engineering: a review on microstructural evolution, tooling and design strategies. CIRP J Manuf Sci Technol 35:560–588. https://www.sciencedirect.com/science/article/pii/S1755581721001358. Accessed 25 Jun 2023

    Article  Google Scholar 

  7. Srivastava M, Rathee S, Maheshwari S, Noor Siddiquee A, Kundra TK (2019) A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques. Crit Rev Solid State Mater Sci 44(5):345–377. https://doi.org/10.1080/10408436.2018.1490250

    Article  Google Scholar 

  8. Patel V, Li W, Vairis A, Badheka V (2019) Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State Mater Sci 44(5):378–426. https://doi.org/10.1080/10408436.2018.1490251

    Article  Google Scholar 

  9. Derazkola HA, Mohammadi Abokheili R, Kordani N, Garcia E, Murillo-Marrodán A (2022) Evaluation of nanocomposite structure printed by solid-state additive manufacturing. CIRP J Manuf Sci Technol 37:174–184. https://www.sciencedirect.com/science/article/pii/S175558172200013X. Accessed 25 Jun 2023

    Article  Google Scholar 

  10. Kumar Srivastava A, Kumar N, Rai DA (2021) Friction stir additive manufacturing – an innovative tool to enhance mechanical and microstructural properties. Mater Sci Eng B Solid-State Mater Adv Technol 263:114832. https://www.sciencedirect.com/science/article/pii/S0921510720303391. Accessed 25 Jun 2023

    Article  Google Scholar 

  11. Derazkola HA, Khodabakhshi F, Simchi A (2020) Evaluation of a polymer-steel laminated sheet composite structure produced by friction stir additive manufacturing (FSAM) technology. Polym Test 90:106690. http://www.sciencedirect.com/science/article/pii/S0142941820311089. Accessed 25 Jun 2023

    Article  Google Scholar 

  12. Theses SH, Puleo SM. ScholarWorks @ UNO Additive friction stir manufacturing of 7055 aluminum alloy. 2016

    Google Scholar 

  13. Lu I Friction stir additive manufacturing ( FSAM ) of 2050 Al-Cu-Li alloy. 2019;

    Google Scholar 

  14. Zhang Z, Tan ZJ, Li JY, Zu YF, Liu WW, Sha JJ (2019) Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing. Int J Adv Manuf Technol 104(1):767–784

    Article  Google Scholar 

  15. Lu IK, Reynolds AP (2021) Innovative friction stir additive manufacturing of cast 2050 Al–Cu–Li aluminum alloy. Prog Addit Manuf 6(3):471–477

    Article  Google Scholar 

  16. Mahto MK, Kumar A, Raja AR, Vashista M, Yusufzai MZK (2022) Friction stir cladding of copper on aluminium substrate. CIRP J Manuf Sci Technol 36:23–34. https://www.sciencedirect.com/science/article/pii/S1755581721001723. Accessed 25 Jun 2023

  17. Griffiths RJ, Garcia D, Song J, Vasudevan VK, Steiner MA, Cai W et al (2021) Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: process-microstructure linkages. Materialia 15:100967. https://www.sciencedirect.com/science/article/pii/S2589152920303835. Accessed 25 Jun 2023

  18. Liu M, Wang BB, An XH, Xue P, Liu FC, Wu LH et al (2022) Friction stir additive manufacturing enabling scale-up of ultrafine-grained pure copper with superior mechanical properties. Mater Sci Eng A 857:144088. https://www.sciencedirect.com/science/article/pii/S0921509322014678. Accessed 25 Jun 2023

  19. Mehta KP, Vilaça P (2022) A review on friction stir-based channeling. Crit Rev Solid State Mater Sci 47(1):1–45. https://doi.org/10.1080/10408436.2021.1886042

    Article  Google Scholar 

  20. Jiang T, Jiao T, Dai G, Shen Z, Guo Y, Sun Z et al (2023) Microstructure evolution and mechanical properties of 2060 Al-Li alloy via friction stir additive manufacturing. J Alloys Compd 935:168019. https://www.sciencedirect.com/science/article/pii/S0925838822044103. Accessed 25 Jun 2023

    Article  Google Scholar 

  21. Mirzadeh H (2021) High strain rate superplasticity via friction stir processing (FSP): a review. Mater Sci Eng A 819:141499. https://www.sciencedirect.com/science/article/pii/S0921509321007681. Accessed 25 Jun 2023

  22. Wu B, Peng Y, Tang H, Meng C, Zhong Y, Zhang F et al (2023) Improving grain structure and dispersoid distribution of nanodiamond reinforced AA6061 matrix composite coatings via high-speed additive friction stir deposition. J Mater Process Technol 317:117983. https://www.sciencedirect.com/science/article/pii/S0924013623001280. Accessed 25 Jun 2023

  23. Hartley WD, Garcia D, Yoder JK, Poczatek E, Forsmark JH, Luckey SG et al (2021) Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition. J Mater Process Technol 291:117169. https://www.sciencedirect.com/science/article/pii/S0924013621001291. Accessed 25 Jun 2023

  24. Phillips BJ, Mason CJT, Beck SC, Avery DZ, Doherty KJ, Allison PG et al (2021) Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition. J Mater Process Technol 295:117169. https://www.sciencedirect.com/science/article/pii/S0924013621001291. Accessed 25 Jun 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Aghajani Derazkola.

Ethics declarations

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyasi, M., Khoram, D., Aghajani Derazkola, H. et al. Effects of process parameters on properties of friction stir additive manufactured copper. Int J Adv Manuf Technol 127, 5651–5664 (2023). https://doi.org/10.1007/s00170-023-11931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11931-y

Keywords

Navigation