Log in

Rolling force prediction during FGC process of tandem cold rolling based on IQGA-WNN ensemble learning

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Aiming to further improving the calculation accuracy of rolling force in the FGC process of tandem cold rolling, the exit thickness accuracy and exit flatness accuracy of the strip in the first few coils after the gauge changing rolling process, a rolling force prediction method based on IQGA-WNN ensemble learning is proposed in this paper in light of the large change of strip parameters and the unstable quality of coils during the FGC process. Firstly, the traditional QGA is improved by quantum variation to avoid falling into local optimal solution. Secondly, the improved QGA is used to optimize the initial parameters of the network to improve the prediction ability of WNN. Finally, the WNNs improved by IQGA are used as the base learners for ensemble learning and are effectively integrated through bagging algorithm to further improve the prediction ability of the model. The rolling force prediction model proposed in this paper is tested on a 1450-mm five-stand tandem cold rolling production line. The results show that, compared with the traditional rolling force model, the separate WNN and IQGA-WNN models, for the first three coils of strip after FGC rolling, the ensemble learning model obtains the minimum rolling force calculation error and strip exit thickness and flatness deviation, the accuracy and stability of the rolling process are improved significantly, which proves the feasibility and effectiveness of the model proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cao JG, Wang T, Cao Y, Song CN, Gao B, Wang B (2021) Cold rolling force model of nuclear power zirconium alloy based on Particle Swarm Optimization. Int J Adv Manuf Tech 115:319–328. https://doi.org/10.1007/s00170-021-07210-3

    Article  Google Scholar 

  2. Wang HH, Ding S, Taylor T, Yanagimoto J (2021) Cold rolling texture prediction using finite element simulation with zooming analysis. Materials 14:6909. https://doi.org/10.3390/ma14226909

    Article  Google Scholar 

  3. Li L, Matsumoto R, Utsunomiya H (2018) Experimental study of roll flattening in cold rolling process. ISIJ Int 58:714–720. https://doi.org/10.2355/isi**ternational.ISIJINT-2017-623

    Article  Google Scholar 

  4. ** X, Li CS, Wang Y, Li XG, Gu T, **ang YG (2020) Multi-objective optimization of intermediate roll profile for a 6-high cold rolling mill. Metals-Basel 10:287. https://doi.org/10.3390/met10020287

    Article  Google Scholar 

  5. **e HB, Jiang ZY, Tieu AK, Liu XH, Wang GD (2008) Prediction of rolling force using an adaptive neural network model during cold rolling of thin strip. Int J Mod Phys B 22:5723–5727. https://doi.org/10.1142/S0217979208051078

    Article  Google Scholar 

  6. You GH, Li S, Wang ZG, Yuan R, Wang ML (2020) A novel analytical model based on arc tangent velocity field for prediction of rolling force in strip rolling. Meccanica 55:1453–1462. https://doi.org/10.1007/s11012-020-01178-2

    Article  MathSciNet  Google Scholar 

  7. Shatalov RL, Kulikov MA (2020) Influence of outer parts of a strip on the deformation and force parameters of thin-sheet rolling. Metallurgist+ 64:687–698. https://doi.org/10.1007/s11015-020-01045-1

    Article  Google Scholar 

  8. Zhang YF, Zhao MY, Xu L, Di HS, Zhou XJ, Wen P, Zhao DW, Zhang DH (2022) Optimization solution of vertical rolling force using unified yield criterion. Int J Adv Manuf Tech 119:1035–1045. https://doi.org/10.1007/s00170-021-08333-3

    Article  Google Scholar 

  9. Chen LZ, Sun WQ, He AR, Yuan TH, Shi JR, Qiang Y (2022) Research on thickness defect control of strip head based on GA-BP rolling force preset model. Metals-Basel 12:924. https://doi.org/10.3390/met12060924

    Article  Google Scholar 

  10. Yang YB, Peng Y (2020) Dynamic rolling model based on uniform deformation. J Manuf Process 58:1334–1347. https://doi.org/10.1016/j.jmapro.2020.08.065

    Article  Google Scholar 

  11. Liu JY, Liu XX, Ba TL (2019) Rolling force prediction of hot rolling based on GA-MELM. Complexity. 3476521. https://doi.org/10.1155/2019/3476521

  12. Klassen EY, Kolesnikov AG, Cherepanov DS (2018) Analytical dependences for determining specific pressures along the length of the deformation zone in tube cold rolling mills. Metallurgist+ 62:686–693. https://doi.org/10.1007/s11015-018-0709-8

    Article  Google Scholar 

  13. Otsuka T, Sakamoto M, Takamachi Y, Higashida Y, Segawa Y, Takeshima S (2017) An online rolling model for plate mill using parallel computation. ISIJ Int 57:2042–2048. https://doi.org/10.2355/isi**ternational.ISIJINT-2017-299

    Article  Google Scholar 

  14. Li JD, Wang XC, Yang Q, Guo Z, Song LB, Mao X (2022) Rolling force prediction in cold rolling process based on combined method of T-S fuzzy neural network and analytical model. Int J Adv Manuf Tech 121:4087–4098. https://doi.org/10.1007/s00170-022-09567-5

    Article  Google Scholar 

  15. Lee S, Son Y (2021) Motor load balancing with roll force prediction for a cold-rolling setup with neural networks. Mathematics-Basel 9:1367. https://doi.org/10.3390/math9121367

    Article  Google Scholar 

  16. Hwang R, Jo H, Kim KS, Hwang HJ (2020) Hybrid model of mathematical and neural network formulations for rolling force and temperature prediction in hot rolling processes. IEEE Access 8:153123–153133. https://doi.org/10.1109/ACCESS.2020.3016725

    Article  Google Scholar 

  17. Zhang SH, **n JL, Che LZ (2021) Modeling of rolling force for thick plate of multicomponent alloys and its application on thickness prediction. Front Mater 8:741144. https://doi.org/10.3389/fmats.2021.741144

    Article  Google Scholar 

  18. Kozhevnikov AV, Kozhevnikova IA, Bolobanova NL (2017) Simulation of cold-rolling process in dynamic conditions. Metallurgist+ 61:519–522. https://doi.org/10.1007/s11015-017-0526-5

    Article  Google Scholar 

  19. Li LJ, **e HB, Liu TW, Li XS, Liu X, Huo MS, Wang ER, Li JX, Liu HQ, Sun L, Jiang ZY (2022) Effects of rolling force on strip shape during tandem cold rolling using a novel multistand finite element model. Steel Res Int 93:2100359. https://doi.org/10.1002/srin.202100359

    Article  Google Scholar 

  20. Kuo CL, Kuruoglu EE, Chan WKV (2022) Neural network structure optimization by simulated annealing. Entropy-Switz 24:348. https://doi.org/10.3390/e24030348

    Article  MathSciNet  Google Scholar 

  21. Liu ZP, Feng R, Li XH, Wang W, Wu XL (2021) Gradient-sensitive optimization for convolutional neural networks. Comput Intel Neurosc 2021:6671830. https://doi.org/10.1155/2021/6671830

    Article  Google Scholar 

  22. O’Reilly J, Pillay N (2022) Supplementary-architecture weight-optimization neural networks. Neural Comput Appl 34:11177–11197. https://doi.org/10.1007/s00521-022-07035-5

    Article  Google Scholar 

  23. Baioletti M, Di Bari G, Milani A, Poggioni V (2020) Differential evolution for neural networks optimization. Mathematics-Basel 8:69. https://doi.org/10.3390/math8010069

    Article  Google Scholar 

  24. Zhang SH, Che LZ, Liu XY (2021) Modelling of deformation resistance with big data and its application in the prediction of rolling force of thick plate. Math Probl Eng 2021:2500636. https://doi.org/10.1155/2021/2500636

    Article  Google Scholar 

  25. Ganaie MA, Hu MH, Malik AK, Tanveer M, Suganthan PN (2022) Ensemble deep learning: A review. Eng Appl Artif Intel. 115:105151. https://doi.org/10.1016/j.engappai.2022.105151

    Article  Google Scholar 

  26. Wang LX, Mao SW, Wilamowski BM, Nelms RM (2020) Ensemble learning for load forecasting. IEEE T Green Commun 4:616–628. https://doi.org/10.1109/TGCN.2020.2987304

    Article  Google Scholar 

  27. Abu Bakar A, Hamdan R, Sani NS (2020) Ensemble learning for multidimensional poverty classification. Sains Malays. 49:447–459. https://doi.org/10.17576/jsm-2020-4902-24

    Article  Google Scholar 

  28. Alqahtani A, Alsubai S, Sha MHM, Vilcekova L, Javed T (2022) Cardiovascular disease detection using ensemble learning. Comput Intel Neurosc 2022:5267498. https://doi.org/10.1155/2022/5267498

    Article  Google Scholar 

  29. Guo YY, Wang X, **ao PC, Xu XZ (2020) An ensemble learning framework for convolutional neural network based on multiple classifiers. Soft Comput 24:3727–3735. https://doi.org/10.1007/s00500-019-04141-w

    Article  Google Scholar 

  30. Yu L, Wu Y, Tang L, Yin H, Lai KK (2021) Investigation of diversity strategies in RVFL network ensemble learning for crude oil price forecasting. Soft Comput 25:3609–3622. https://doi.org/10.1007/s00500-020-05390-w

    Article  Google Scholar 

  31. Alam KMR, Siddique N, Adeli H (2020) A dynamic ensemble learning algorithm for neural networks. Neural Comput Appl 32:675–8690. https://doi.org/10.1007/s00521-019-04359-7

    Article  Google Scholar 

  32. Shoaib M, Shamseldin AY, Khan S, Khan MM, Khan ZM, Sultan T, Melville BW (2018) A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting. Water Resour Manag 32:83–103. https://doi.org/10.1007/s11269-017-1796-1

    Article  Google Scholar 

  33. Gursoy O, Engin SN (2019) A wavelet neural network approach to predict daily river discharge using meteorological data. Meas Control-Uk 52:599–607. https://doi.org/10.1177/0020294019827972

    Article  Google Scholar 

  34. Liu JW, Zuo FL, Guo YX, Li TY, Chen JM (2021) Research on improved wavelet convolutional wavelet neural networks. Appl Intell 51:4106–4126. https://doi.org/10.1007/s10489-020-02015-5

    Article  Google Scholar 

  35. Deepa SN, Rizwana JB (2018) Momentum-based wavelet and double wavelet neural networks for power system applications. Neural Comput Appl 29:495–511. https://doi.org/10.1007/s00521-016-2552-9

    Article  Google Scholar 

  36. Shi S, Zhang XL, Zhao XL, Yang L, Du W, Wang YJ (2019) Prediction of the RNA secondary structure using a multi-population assisted quantum genetic algorithm. Hum Hered 84:1–8. https://doi.org/10.1159/000501480

    Article  Google Scholar 

  37. Dong YM, Zhang JL (2021) An improved hybrid quantum optimization algorithm for solving nonlinear equations. Quantum Inf Process 20:134. https://doi.org/10.1007/s11128-021-03067-3

    Article  MathSciNet  Google Scholar 

  38. Chen BQ, Niu XF (2020) Quantum neural network with improved quantum learning algorithm. Int J Thero Phys 59:1978–1991. https://doi.org/10.1007/s10773-020-04470-9

    Article  MathSciNet  MATH  Google Scholar 

  39. Tkachuk V (2018) Quantum genetic algorithm based on qutrits and its application. Math Probl Eng 2018:8614073. https://doi.org/10.1155/2018/8614073

    Article  MathSciNet  MATH  Google Scholar 

  40. SaiToh A, Rahimi R, Nakahara M (2014) A quantum genetic algorithm with quantum crossover and mutation operations. Quantum Inf Process 13:737–755. https://doi.org/10.1007/s11128-013-0686-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Tan YH, Chen SH, Zhang GM, **ong ZT (2013) Adaptive impedance matching using quantum genetic algorithm. J Cent South Univ 20:977–981. https://doi.org/10.1007/s11771-013-1573-0

    Article  Google Scholar 

  42. Lamata L, Alvarez-Rodriguez U, Martin-Guerrero JD, Sanz M, Solano E (2019) Quantum autoencoders via quantum adders with genetic algorithm. Quantum Sci Technol. 4:014007. https://doi.org/10.1088/2058-9565/aae22b

    Article  Google Scholar 

  43. Ngo G, Beard R, Chandra R (2022) Evolutionary bagging for ensemble learning. Neurocomputing 510:1–14. https://doi.org/10.1016/j.neucom.2022.08.055

    Article  Google Scholar 

  44. Liu XB, Wang GJ, Cai ZH, Zhang H (2016) Bagging based ensemble transfer learning. J Amb Intel Hum Comp 7:29–36. https://doi.org/10.1007/s12652-015-0296-5

    Article  Google Scholar 

  45. Le-Rademacher J, Billard L (2017) Principal component analysis for histogram-valued data. Adv Data Anal Classi 11:327–351. https://doi.org/10.1007/s11634-016-0255-9

    Article  MathSciNet  MATH  Google Scholar 

  46. Kwon J, Oh HS, Lim Y (2020) Dynamic principal component analysis with missing values. J Appl Stat 47:1957–1969. https://doi.org/10.1080/02664763.2019.1699910

    Article  MathSciNet  MATH  Google Scholar 

  47. Beattie JR, Esmonde-White FWL (2021) Exploration of principal component analysis: deriving principal component analysis visually using spectra. Appl Spectrosc 75:361–375. https://doi.org/10.1177/0003702820987847

    Article  Google Scholar 

  48. Li LM, Zhao J, Wang CR, Yan CJ (2020) Comprehensive evaluation of robotic global performance based on modified principal component analysis. Int J Adv Robot Syst 17:1729881419896881. https://doi.org/10.1177/1729881419896881

    Article  Google Scholar 

  49. Liu YM, Sun J, Wang QL, Zhang DH, Zhao DW (2017) Mathematical model for cold rolling based on energy method. Meccanica 52:2069–2080. https://doi.org/10.1007/s11012-016-0569-x

    Article  MathSciNet  MATH  Google Scholar 

  50. Li Y, Jiang Z, Li F (2009) Analysis of rolling force model in cold rolling mill. Rev Metall-Paris 106:69–73. https://doi.org/10.1051/metal/2009016

    Article  Google Scholar 

  51. Wang ZH, Zhang DH, Gong DY, Peng W (2019) A new data-driven roll force and roll torque model based on FEM and hybrid PSO-ELM for hot strip rolling. ISIJ Int 59:1604–1613. https://doi.org/10.2355/isi**ternational.ISIJINT-2018-846

    Article  Google Scholar 

  52. Tieu A, Zhu HT, Lu C, You C, Jiang ZY, D’Alessio G (2006) Modelling of friction coefficient in cold strip rolling. Mater Sci Forum 505–507:1285–1290. https://doi.org/10.4028/www.scientific.net/MSF.505-507.1285

    Article  Google Scholar 

  53. Li WG, Liu C, Feng N, Chen X, Liu XH (2016) Friction estimation and roll force prediction during hot strip rolling. J Iron Steel Res Int 23:1268–1276. https://doi.org/10.1016/S1006-706X(16)30187-X

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Ministry of Industry and Information Technology High-Tech Ship Research Project: Research on Development and Application of Digital Process Design System for Ship Coating (No.: MC-202003-Z01-02) and Innovation Fund General Project of Nan**g Institute of Technology (No.: CKJB202209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuwen Yan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors declare that they all participated to the work.

Consent for publication

All the authors agree to publish the paper in the International Journal of Advanced Manufacturing Technology.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Bu, H., Hu, C. et al. Rolling force prediction during FGC process of tandem cold rolling based on IQGA-WNN ensemble learning. Int J Adv Manuf Technol 125, 2869–2884 (2023). https://doi.org/10.1007/s00170-023-10899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-10899-z

Keywords

Navigation