Log in

Metallkonzentrationen bei Patienten mit Metall-Metall-Gleitpaarungs-Prothese

Metal ion concentrations in patients with metal-metal bearings in prostheses

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Erhöhter Verschleiß von Prothesen mit Metall-Metall-Gleitpaarungen führt bei betroffenen Patienten zu erhöhten systemischen und lokalen Metallkonzentrationen. Die lokalen Metallbelastungen in der Nähe des Implantats (z. B. Gelenkpunktat/Gewebe) sind dabei um ein Vielfaches höher als die systemischen Belastungen (z. B. im Blut/Serum). In Folge der erhöhten Metallbelastung kann es zu lokalen und systemischen Wirkungen, wie z. B. Osteolysen, Pseudotumoren, lokal-allergischen Reaktionen oder in seltenen Fällen zu Intoxikationen kommen. Die Bestimmung der systemischen Metallkonzentrationen hat sich mittlerweile etabliert, obwohl die genaue Definition eines Grenz- oder Schwellenwerts zur Diagnose eines klinischen Problems aufgrund der geringen Sensitivität schwierig ist. Derzeit wird ein Schwellenwert für Kobalt oder Chrom in der Größenordnung zwischen 4 und 7 µg/l diskutiert. Sehr hohe Konzentrationen (≥ 20 µg/l) oder die sukzessive Zunahme der Metallkonzentration sollten als alarmierende Zeichen gewertet werden. Nichtsdestotrotz sollte die Metallkonzentration nicht im Sinne eines isolierten diagnostischen Verfahrens, sondern im Gesamtkontext der klinischen und radiologischen Untersuchungen (Metal-artifact-reduction-sequence[MARS]-MRT, Ultraschall und CT) bewertet werden.

Abstract

Increased wear leads to elevated systemic and local metal ion concentrations for patients treated with metal-on-metal bearings. The local metal ion content in the close environment of the joint replacement (e.g. joint aspirate or tissue) is several times higher compared to the systemic metal content (e.g. in blood or serum). As a result of increased metal ion levels, local and systemic effects, such as osteolysis, pseudotumors, sensitization or in rare cases toxicity may occur. Although the definition of a specific threshold to define clinical problems is difficult due to a lack of sensitivity, the systemic metal concentration is frequently measured clinically. Currently a threshold for cobalt and chromium between 4 µg/l and 7 µg/l is under debate. Very high levels (≥ 20 µg/l) or a steady increase over time should be a warning sign; however, metal ion levels should not be interpreted as a single diagnostic tool but rather in the entire context of the clinical, radiological and cross-sectional imaging, metal artefact reduction sequence (MARS) magnetic resonance imaging (MRI), ultrasound and computed tomography (CT) findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bin Nasser A, Beaule PE, O’Neill M et al (2010) Incidence of groin pain after metal-on-metal hip resurfacing. Clin Orthop Relat Res 468:392–399

    Article  Google Scholar 

  2. Davda K, Lali FV, Sampson B et al (2011) An analysis of metal ion levels in the joint fluid of symptomatic patients with metal-on-metal hip replacements. J Bone Joint Surg [Br] 93:738–745

    Google Scholar 

  3. De Haan R, Pattyn C, Gill HS et al (2008) Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg [Br] 90:1291–1297

    Google Scholar 

  4. De Smet K, Campbell P, Van Orsouw M et al (2010) Interpretation of metal ion levels after metal-on-metal hip resurfacing. 2010 Annual Meeting AAOS, New Orleans

  5. De Smet K, De Haan R, Calistri A et al (2008) Metal ion measurement as a diagnostic tool to identify problems with metal-on-metal hip resurfacing. J Bone Joint Surg [Am] 90(Suppl 4):202–208

    Google Scholar 

  6. DeSouza RM, Wallace D, Costa ML et al (2012) Transplacental passage of metal ions in women with hip resurfacing: no teratogenic effects observed. Hip Int 22:96–99

    Article  PubMed  Google Scholar 

  7. EFORT, EHS, AE et al (2012) Aktuelle Konsensus-Empfehlungen zur Handhabung von Metall-Metall-Gleitpaarungen. EFORT, EHS, AE & DAH

  8. Engh CA Jr, MacDonald SJ, Sritulanondha S et al (2009) 2008 John Charnley Award: metal ion levels after metal-on-metal total hip arthroplasty: a randomized trial. Clin Orthop Relat Res 467:101–111

    Article  PubMed  Google Scholar 

  9. FDA (2013) FDA safety communication: metal-on-metal hip implants

  10. Fleury C, Petit A, Mwale F et al (2006) Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. Biomaterials 27:3351–3360

    Article  PubMed  CAS  Google Scholar 

  11. Fritzsche J, Borisch C, Schaefer C (2012) Case report: high chromium and cobalt levels in a pregnant patient with bilateral metal-on-metal hip arthroplasties. Clin Orthop Relat Res 470:2325–2331

    Article  PubMed  Google Scholar 

  12. Griffin WL, Fehring TK, Kudrna JC et al (2012) Are metal ion levels a useful trigger for surgical intervention? J Arthroplasty 27:32–36

    Article  PubMed  Google Scholar 

  13. Hallab NJ, Jacobs JJ, Skipor A et al (2000) Systemic metal-protein binding associated with total joint replacement arthroplasty. J Biomed Mater Res 49:353–361

    Article  PubMed  CAS  Google Scholar 

  14. Hart AJ, Sabah S, Henckel J et al (2009) The painful metal-on-metal hip resurfacing. J Bone Joint Surg [Br] 91:738–744

    Google Scholar 

  15. Hart AJ, Sabah SA, Bandi AS et al (2011) Sensitivity and specificity of blood cobalt and chromium metal ions for predicting failure of metal-on-metal hip replacement. J Bone Joint Surg [Br] 93:1308–1313

    Google Scholar 

  16. Heisel C, Streich N, Krachler M et al (2008) Characterization of the running-in period in total hip resurfacing arthroplasty: an in vivo and in vitro metal ion analysis. J Bone Joint Surg [Am] 90(Suppl 3):125–133

    Google Scholar 

  17. Ikeda T, Takahashi K, Kabata T et al (2010) Polyneuropathy caused by cobalt-chromium metallosis after total hip replacement. Muscle Nerve 42:140–143

    Article  PubMed  Google Scholar 

  18. Krachler M (2007) Environmental applications of single collector high resolution ICP-MS. J Environ Monit 9:790–804

    Article  PubMed  CAS  Google Scholar 

  19. Kwon YM, Glyn-Jones S, Simpson DJ et al (2010) Analysis of wear of retrieved metal-on-metal hip resurfacing implants revised due to pseudotumours. J Bone Joint Surg [Br] 92:356–361

    Google Scholar 

  20. Kwon YM, Ostlere SJ, McLardy-Smith P et al (2011) „Asymptomatic“ pseudotumors after metal-on-metal hip resurfacing arthroplasty: prevalence and metal ion study. J Arthroplasty 26:511–518

    Article  PubMed  Google Scholar 

  21. Kwon YM, Thomas P, Summer B et al (2010) Lymphocyte proliferation responses in patients with pseudotumors following metal-on-metal hip resurfacing arthroplasty. J Orthop Res 28:444–450

    PubMed  CAS  Google Scholar 

  22. Langton DJ, Jameson SS, Joyce TJ et al (2010) Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg [Br] 92:38–46

    Google Scholar 

  23. Langton DJ, Sidaginamale R, Lord JK et al (2012) Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res 1:56–63

    PubMed  CAS  Google Scholar 

  24. Maezawa K, Nozawa M, Yuasa T et al (2010) Seven years of chronological changes of serum chromium levels after Metasul metal-on-metal total hip arthroplasty. J Arthroplasty 25:1196–1200

    Article  PubMed  Google Scholar 

  25. Makela KT, Visuri T, Pulkkinen P et al (2012) Risk of cancer with metal-on-metal hip replacements: population based study. BMJ 345:e4646

    Article  PubMed  Google Scholar 

  26. Malek IA, King A, Sharma H et al (2012) The sensitivity, specificity and predictive values of raised plasma metal ion levels in the diagnosis of adverse reaction to metal debris in symptomatic patients with a metal-on-metal arthroplasty of the hip. J Bone Joint Surg [Br] 94:1045–1050

    Google Scholar 

  27. Matthies AK, Skinner JA, Osmani H et al (2011) Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res (Dec 20 Epub; ahead of print)

  28. MHRA (2012) Medicines and healthcare products regulatory agency, medical device alert. MDA/2012/008

  29. Minoia C, Sabbioni E, Apostoli P et al (1990) Trace element reference values in tissues from inhabitants of the European community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci Total Environ 95:89–105

    Article  PubMed  CAS  Google Scholar 

  30. Pandit H, Glyn-Jones S, McLardy-Smith P et al (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg [Br] 90:847–851

    Google Scholar 

  31. Papageorgiou I, Brown C, Schins R et al (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958

    Article  PubMed  CAS  Google Scholar 

  32. Rizzetti MC, Liberini P, Zarattini G et al (2009) Loss of sight and sound. Could it be the hip? Lancet 373:1052

    Article  PubMed  Google Scholar 

  33. Sampson B, Hart A (2012) Clinical usefulness of blood metal measurements to assess the failure of metal-on-metal hip implants. Ann Clin Biochem 49:118–131

    Article  PubMed  CAS  Google Scholar 

  34. Smith AJ, Dieppe P, Porter M et al (2012) Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: linkage study between the National Joint Registry of England and Wales and hospital episode statistics. BMJ 344:e2383

    Article  PubMed  Google Scholar 

  35. Smolders JM, Bisseling P, Hol A et al (2011) Metal ion interpretation in resurfacing versus conventional hip arthroplasty and in whole blood versus serum. How should we interpret metal ion data. Hip Int 21:587–595

    Article  PubMed  Google Scholar 

  36. Toms AP, Marshall TJ, Cahir J et al (2008) MRI of early symptomatic metal-on-metal total hip arthroplasty: a retrospective review of radiological findings in 20 hips. Clin Radiol 63:49–58

    Article  PubMed  CAS  Google Scholar 

  37. Tower S (2010) Arthroprosthetic cobaltism: identification of the at-risk patient. Alaska Med 52:28–32

    PubMed  Google Scholar 

  38. Tower SS (2010) Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty: a case report. J Bone Joint Surg [Am] 92:2847–2851

    Google Scholar 

  39. Tsaousi A, Jones E, Case CP (2010) The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res 697:1–9

    Article  PubMed  CAS  Google Scholar 

  40. Van Der Straeten C, Grammatopoulos G, Gill HS et al (2013) The 2012 otto aufranc award: the interpretation of metal ion levels in unilateral and bilateral hip resurfacing. Clin Orthop Relat Res 471:377–385

    Article  Google Scholar 

  41. Watters TS, Cardona DM, Menon KS et al (2010) Aseptic lymphocyte-dominated vasculitis-associated lesion: a clinicopathologic review of an underrecognized cause of prosthetic failure. Am J Clin Pathol 134:886–893

    Article  PubMed  Google Scholar 

  42. Willert HG, Buchhorn GH, Fayyazi A et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg [Am] 87:28–36

    Google Scholar 

  43. Williams DH, Greidanus NV, Masri BA et al (2011) Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg [Am] 93:2164–2171

    Google Scholar 

  44. **a Z, Kwon YM, Mehmood S et al (2011) Characterization of metal-wear nanoparticles in pseudotumor following metal-on-metal hip resurfacing. Nanomedicine 7:674–681

    Article  PubMed  CAS  Google Scholar 

  45. Yoon JP, Le Duff MJ, Takamura KM et al (2011) Mid-to-long term follow-up of Transcend metal-on-metal versus Interseal metal-on-polyethylene bearings in total hip arthroplasty. Hip Int 21:571–576

    Article  PubMed  Google Scholar 

  46. Ziaee H, Daniel J, Datta AK et al (2007) Transplacental transfer of cobalt and chromium in patients with metal-on-metal hip arthroplasty: a controlled study. J Bone Joint Surg [Br] 89:301–305

    Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Interessenkonflikt. J.P. Kretzer, C. van der Straeten, R. Sonntag, U. Müller, M. Streit, B. Moradi, S. Jäger, J. Reinders J geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.P. Kretzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzer, J., Van Der Straeten, C., Sonntag, R. et al. Metallkonzentrationen bei Patienten mit Metall-Metall-Gleitpaarungs-Prothese. Orthopäde 42, 622–628 (2013). https://doi.org/10.1007/s00132-012-2035-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-012-2035-3

Schlüsselwörter

Keywords

Navigation