Log in

Induced mutation in ELONGATED HYPOCOTYL5 abolishes anthocyanin accumulation in the hypocotyl of pepper

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The causal gene, CaHY5 of a chemical induced green-hypocotyl mutant was identified by molecular map**. CaHY5 regulates anthocyanin accumulation by directly binding to the promoter of genes in anthocyanin pathway.

Abstract

Morphological markers at seedling stage are useful indicators for F1 hybrid seeds screening. Pepper is a worldwide vegetable with diverse uses, and F1 hybrids are popular in the pepper industry. Hypocotyl color is a useful marker to identify F1 hybrid seeds. However, most pepper accessions have purple hypocotyl caused by anthocyanin accumulation, while green hypocotyl pepper accessions are rare. In this study, we identified a green hypocotyl mutant (e1898) from a pepper ethylmethanesulfonate (EMS) mutant library. By combining bulked segregant RNA-seq (BSR), genome resequencing and recombinant analysis, it was found that CaHY5 is the causal gene of this mutant. Virus-induced gene silencing (VIGS) of CaHY5 resulted in the decrease of anthocyanin accumulation in pepper hypocotyls. RNA-seq data showed that many genes related to anthocyanin biosynthesis and transport decreased significantly in the mutant. Yeast one-hybrid (Y1H) assays showed that CaHY5 can bind to the promoter of CaF3H, CaF3′5’H, CaDFR, CaANS and CaGST, which are important genes in anthocyanin biosynthesis or transport. Our results indicate that CaHY5 directly regulates anthocyanin biosynthesis and transport, thus governing anthocyanin accumulation in pepper hypocotyl. The mutant and gene identified in this work shall be valuable in the purity control of hybrid pepper seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The RNA-seq and resequencing data of this work are available at the NCBI repository (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA842918).

References

  • Ang L-H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X-W (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222

    CAS  PubMed  Google Scholar 

  • Aza-González C, Núñez-Palenius HG, Ochoa-Alejo N (2012) Molecular biology of chili pepper anthocyanin biosynthesis. J Mex Chem Soc 56:93–98

    Google Scholar 

  • Bai S, Tao R, Yin L, Ni J, Yang Q, Yan X, Yang F, Guo X, Li H, Teng Y (2019) Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. Plant J 100:1208–1223

    CAS  PubMed  Google Scholar 

  • Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C (2013) Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol 200:650–655

    CAS  PubMed  Google Scholar 

  • Bhutia ND, Seth T, Shende VD, Dutta S, Chattopadhyay A (2015) Estimation of heterosis, dominance effect and genetic control of fresh fruit yield, quality and leaf curl disease severity traits of chilli pepper (Capsicum annuum L.). Sci Hortic 182:47–55

    Google Scholar 

  • Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3’-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19:441–451

    CAS  PubMed  Google Scholar 

  • Burko Y, Gaillochet C, Seluzicki A, Chory J, Busch W (2020) Local HY5 activity mediates hypocotyl growth and shoot-to-root communication. Plant Commun 1:100078

    PubMed  PubMed Central  Google Scholar 

  • Chao H, Guo L, Zhao W, Li H, Li M (2022) A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napus. Theor Appl Genet 135:1293–1305

    CAS  PubMed  Google Scholar 

  • Dong Y-H, Beuning L, Davies K, Mitra D, Morris B, Kootstra A (1998) Expression of pigmentation genes and photo-regulation of anthocyanin biosynthesis in develo** Royal Gala apple flowers. Funct Plant Biol 25:245–252

    CAS  Google Scholar 

  • Fang DD, Naoumkina M, Thyssen GN, Bechere E, Li P, Florane CB (2020) An EMS-induced mutation in a tetratricopeptide repeat-like superfamily protein gene (Ghir_A12G008870) on chromosome A12 is responsible for the liy short fiber phenotype in cotton. Theor Appl Genet 133:271–282

    CAS  PubMed  Google Scholar 

  • Gangappa N, Sreeramaiah BF, Javier, (2016) The multifaceted roles of HY5 in plant growth and development. Mol Plant 9:1353–1365

    CAS  PubMed  Google Scholar 

  • Han L, Zou H, Zhou L, Wang Y (2022) Transcriptome-based identification and expression analysis of the glutathione S-transferase (GST) family in tree peony reveals a likely role in anthocyanin transport. Hortic Plant J. https://doi.org/10.1016/j.hpj.2022.04.001

    Article  Google Scholar 

  • Haskell G (1961) Seedling morphology in applied genetics and plant breeding. Bot Rev 27:382–421

    Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    CAS  PubMed  Google Scholar 

  • Huang D, Wang X, Tang Z, Yuan Y, Xu Y, He J, Jiang X, Peng S-A, Li L, Butelli E, Deng X, Xu Q (2018) Subfunctionalization of the Ruby2–Ruby1 gene cluster during the domestication of citrus. Nat Plants 4:930–941

    CAS  PubMed  Google Scholar 

  • Jankowicz-Cieslak J, Till BJ (2016) Chemical mutagenesis of seed and vegetatively propagated plants using EMS. Curr Protoc Plant Biol 1:617–635

    PubMed  Google Scholar 

  • **g Y, Zhang D, Wang X, Tang W, Wang W, Huai J, Xu G, Chen D, Li Y, Lin R (2013) Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell 25:242–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karim KMR, Rafii MY, Misran AB, Ismail MFB, Harun AR, Khan MMH, Chowdhury MFN (2021) Current and prospective strategies in the varietal improvement of chilli (Capsicum annuum L.) specially heterosis breeding. Agronomy 11:2217

    CAS  Google Scholar 

  • Kim S, Park J, Yeom S-I, Kim Y-M, Lee JM, Lee H-A, Seo E, Choi J, Cheong K, Kim K-T, Jung K, Lee G-W, Oh S-K, Bae C, Kim S-B, Lee H-Y, Kim S-Y, Kim M-S, Kang B-C, Jo YD, Yang H-B, Jeong H-J, Kang W-H, Kwon J-K, Shin C, Lim JY, Park JH, Huh JH, Kim J-S, Kim B-D, Cohen O, Paran I, Suh MC, Lee SB, Kim Y-K, Shin Y, Noh S-J, Park J, Seo YS, Kwon S-Y, Kim HA, Park JM, Kim H-J, Choi S-B, Bosland PW, Reeves G, Jo S-H, Lee B-W, Cho H-T, Choi H-S, Lee M-S, Yu Y, Do Choi Y, Park B-S, Van Deynze A, Ashrafi H, Hill T, Kim WT, Pai H-S, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sørensen I, Lee S-J, Kim RW, Choi I-Y, Choi B-S, Lim J-S, Lee Y-H, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    CAS  PubMed  Google Scholar 

  • Kim S, Park J, Yeom S-I, Kim Y-M, Seo E, Kim K-T, Kim M-S, Lee JM, Cheong K, Shin H-S, Kim S-B, Han K, Lee J, Park M, Lee H-A, Lee H-Y, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee S-C, Kwon J-K, Lee H-Y, Koo N, Hong Y, Kim RW, Kang W-H, Huh JH, Kang B-C, Yang T-J, Lee Y-H, Bennetzen JL, Choi D (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18(1):1–11

    CAS  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lafountain AM, Yuan YW (2021) Repressors of anthocyanin biosynthesis. New Phytol 231:933–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    CAS  Google Scholar 

  • Larsen ES, Alfenito MR, Briggs WR, Walbot V (2003) A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9. Plant Cell Rep 21:900–904

    CAS  PubMed  Google Scholar 

  • Li Y, Xu P, Chen G, Wu J, Liu Z, Lian H (2020) FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5–bHLH9 transcription complex in strawberry fruits. Plant Cell Physiol 61:826–837

    CAS  PubMed  Google Scholar 

  • Li T, Lian H, Li H, Xu Y, Zhang H (2021) HY5 regulates light-responsive transcription of microRNA163 to promote primary root elongation in Arabidopsis seedlings. J Integr Plant Biol 63:1437–1450

    CAS  PubMed  Google Scholar 

  • Liu F, Yu H, Deng Y, Zheng J, Liu M, Ou L, Yang B, Dai X, Ma Y, Feng S, He S, Li X, Zhang Z, Chen W, Zhou S, Chen R, Liu M, Yang S, Wei R, Li H, Li F, Ouyang B, Zou X (2017) PepperHub, an informatics hub for the chili pepper research community. Mol Plant 10:1129–1132

    CAS  PubMed  Google Scholar 

  • Liu Y, Tikunov Y, Schouten RE, Marcelis LF, Visser RG, Bovy A (2018) Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Front Chem 6:52

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhang Y, He H, He G, Deng XW (2022a) From hybrid genomes to heterotic trait output: challenges and opportunities. Curr Opin Plant Biol 66:102193

    CAS  PubMed  Google Scholar 

  • Liu Y, Ou L, Liu Z, Lv J, Wang J, Song J, Yang B, Chen W, Yang S, Liu W (2022b) A novel single-base mutation in CaSGR1 confers the stay-green phenotype in pepper (Capsicum annuum L.). Hortic Plant J. https://doi.org/10.1016/j.hpj.2022.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Dai C, Li Y, Feng J, Liu Z, Kang C (2018) Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. J Exp Bot 69:2595–2608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Ding J, Li Y, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Li Z, Harwood W, Lan X, Deng M, Lu Z, Wei Y, Zheng Y, Jiang Q (2019) A single-base change at a splice site in Wx-A1 caused incorrect RNA splicing and gene inactivation in a wheat EMS mutant line. Theor Appl Genet 132:2097–2109

    CAS  PubMed  Google Scholar 

  • Malone LA, Barraclough EI, Lin-Wang K, Stevenson DE, Allan AC (2009) Effects of red-leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, Spodoptera litura and Helicoverpa armigera. Entomol Exp Appl 133:117–127

    Google Scholar 

  • Mengnan X, Shenhao W, Shu Z, Qingzhi C, Dongli G, Huiming C, Sanwen H (2015) A new gene conferring the glabrous trait in cucumber identified using MutMap. Hortic Plant J 1:29–34

    Google Scholar 

  • Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu JH (2021) The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytol 229:2730–2750

    CAS  PubMed  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    CAS  PubMed  Google Scholar 

  • Pokalsky A, Hiatt W, Ridge N, Rasmussen R, Houck C, Shewmaker C (1989) Structure and expression of elongation factor 1α in tomato. Nucleic Acids Res 17:4661–4673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y (2016) The tomato Hoffman’s Anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS ONE 11:e0151067

    PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Wang H, Li D, Yu B, Hui Q, Yan S, Huang Z, Cui X, Cao B (2019) Identification of candidate HY5-dependent and-independent regulators of anthocyanin biosynthesis in tomato. Plant Cell Physiol 60:643–656

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  • Shi L, Jiang C, He Q, Habekuß A, Ordon F, Luan H, Shen H, Liu J, Feng Z, Zhang J, Yang P (2019) Bulked segregant RNA-sequencing (BSR-seq) identified a novel rare allele of eIF4E effective against multiple isolates of BaYMV/BaMMV. Theor Appl Genet 132:1777–1788

    CAS  PubMed  Google Scholar 

  • Shi C, Shen X, Zhang Z, Zhou Y, Chen R, Luo J, Tang Y, Lu Y, Li F, Ouyang B (2022) Conserved role of fructokinase-like protein 1 in chloroplast development revealed by a seedling-lethal albino mutant of pepper. Hortic Res 9:uhab084

    PubMed Central  Google Scholar 

  • Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994

    CAS  PubMed  Google Scholar 

  • Shin DH, Choi M, Kim K, Bang G, Cho M, Choi S-B, Choi G, Park Y-I (2013) HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett 587:1543–1547

    CAS  PubMed  Google Scholar 

  • Shirasawa K, Hirakawa H, Nunome T, Tabata S, Isobe S (2016) Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato. Plant Biotechnol J 14:51–60

    CAS  PubMed  Google Scholar 

  • Singh D, Pramod T, Jain S (2012) Heterosis studies for growth, flowering, and yield of chilli (Capsicum annuum L.). Pantnagar J Res 10:61–65

    Google Scholar 

  • Stracke R, Favory J-J, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33:88–103

    CAS  PubMed  Google Scholar 

  • Su N, Hu M-L, Wu D-X, Wu F-Q, Fei G-L, Lan Y, Chen X-L, Shu X-L, Zhang X, Guo X-P, Cheng Z-J, Lei C-L, Qi C-K, Jiang L, Wang H, Wan J-M (2012) Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol 159:227–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197

    CAS  PubMed  Google Scholar 

  • Tang B, Li L, Hu Z, Chen Y, Tan T, Jia Y, **e Q, Chen G (2020) Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple pepper. J Agric Food Chem 68:12152–12163

    CAS  PubMed  Google Scholar 

  • Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y (2011) Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys Res Commun 416:24–30

    CAS  PubMed  Google Scholar 

  • Wan C, Li C, Ma X, Wang Y, Sun C, Huang R, Zhong P, Gao Z, Chen D, Xu Z, Zhu J, Gao X, Wang P, Deng X (2015) GRY79 encoding a putative metallo-β-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice. Plant Cell Rep 34:1353–1363

    CAS  PubMed  Google Scholar 

  • Wang Y, ** stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201

    CAS  PubMed  Google Scholar 

  • Wang W, Wang P, Li X, Wang Y, Tian S, Qin G (2021) The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. Hortic Res 8:83

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wu F, Chen X, Zhou W, Shi H, Lin Y, Hou S, Yu S, Zhou H, Li C, Liu Y (2022) Fine map** of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet 135:527–535

    CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    CAS  PubMed  Google Scholar 

  • Zhang Y, Butelli E, Stefano D, Rosalba S-J, Magusin A, Pagliarani C, Wellner N, Hill L, Orzaez D, Granell A, Jones DG, Jonathan MC (2013) Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 23:1094–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19:81–90

    CAS  PubMed  Google Scholar 

  • Zhang L, Huang Z, Wang X, Gao J, Guo Y, Du Y, Hu H (2016) Fine map** and molecular marker development of anthocyanin absent, a seedling morphological marker for the selection of male sterile 10 in tomato. Mol Breed 36:8

    Google Scholar 

  • Zhang C, Wu Y, Liu X, Zhang J, Li X, Lin L, Yin R (2022) Pivotal roles of ELONGATED HYPOCOTYL5 in regulation of plant development and fruit metabolism in tomato. Plant Physiol 189:527

    PubMed  Google Scholar 

  • Zhou Y, Deng Y, Liu D, Wang H, Zhang X, Liu T, Wang J, Li Y, Ou L, Liu F, Zou X, Ouyang B, Li F (2021) Promoting virus-induced gene silencing of pepper genes by a heterologous viral silencing suppressor. Plant Biotechnol J 19:2398–2400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Sun X, Zhang Q, Song P, Hu Q, Zhang X, Li X, Hu J, Pan J, Sun S, Weng Y, Yang L (2018) GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon. Theor Appl Genet 131:569–579

    CAS  PubMed  Google Scholar 

  • Zhu Q, Wang B, Tan J, Liu T, Li L, Liu Y-G (2020) Plant synthetic metabolic engineering for enhancing crop nutritional quality. Plant Commun 1:100017

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jihong Liu for providing the nucleus marker (Mcherry-RFP).

Funding

This study was funded by the National Natural Science Foundation (U21A20230, 31972416, U1906205) and the National Key R&D Program (2018YFD1000800, 2022YFE0100900) of China. Y.T. is grateful to the Tianshan Xuesong Project (2020XS30) of ** Tang, Feng Li, Yongen Lu & Bo Ouyang

Authors

Contributions

B.O. and R.C. designed the research and wrote the manuscript; R.C. performed most of the experiments; Y.C. constructed the vectors for Y1H; H.G. and C.S. analyzed data; Z.Z. constructed the pepper EMS mutant library; G.Y., X.S. and Y.T. contributed to the VIGS experiment; F.L. and Y.L. provided valuable suggestions and modified the manuscript.

Corresponding author

Correspondence to Bo Ouyang.

Ethics declarations

Conflicts of interest

All authors have no conflict of interest to declare.

Additional information

Communicated by Richard G. F. Visser.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 32 KB)

Supplementary file2 (DOCX 1723 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yang, C., Gao, H. et al. Induced mutation in ELONGATED HYPOCOTYL5 abolishes anthocyanin accumulation in the hypocotyl of pepper. Theor Appl Genet 135, 3455–3468 (2022). https://doi.org/10.1007/s00122-022-04192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04192-y

Navigation