Log in

ClZISO mutation leads to photosensitive flesh in watermelon

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The mutation of ClZISO identified in EMS-induced watermelon leads to photosensitive flesh in watermelon.

Abstract

Watermelon (Citrullus lanatus) has a colorful flesh that attracts consumers and benefits human health. We developed an ethyl-methanesulfonate mutation library in red-fleshed line ‘302’ to create new flesh color lines and found a yellow-fleshed mutant which accumulated ζ-carotene. The initial yellow color of this mutant can be photobleached within 10 min under intense sunlight. A long-term light-emitting diode (LED) light treatment turned flesh color from yellow to pink. We identified this unique variation as photosensitive flesh mutant (‘psf’). Using bulked segregant analysis, we fine-mapped an EMS-induced G-A transversion in ‘psf’ which leads to a premature stop codon in 15-cis-ζ-carotene isomerase (ClZISO) gene. We detected that wild-type ClZISO is expressed in chromoplasts to catalyze the conversion of 9,15,9’-tri-cis-carotene to 9,9’-di-cis-ζ-carotene. The truncated ClZISOmu protein in psf lost this catalytic function. Light treatment can partially compensate ClZISOmu isomerase activity via photoisomerization in vitro and in vivo. Transcriptome analysis showed that most carotenoid biosynthesis genes in psf were downregulated. The dramatic increase of ABA content in flesh with fruit development was blocked in psf. This study explores the molecular mechanism of carotenoid biosynthesis in watermelon and provides a theoretical and technical basis for breeding different flesh color lines in watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The transcriptome sequencing reads have been deposited into the NCBI sequence read archive (SRA) under accession no. PRJNA759595. The genome sequence of ‘97103’ (version 2) is also available at the Cucurbit Genomics Database (http://cucurbitgenomics.org/). SNPs between wild-type 302 and ‘psf’ mutant are available online in accordance with funder data retention policies (https://iibbc.com:51618/share/rfmrQD6Q). The other data used to support the findings of this study are available from the corresponding author upon request.

References

  • Andreeva A, Abarova S, Stoitchkova K, Picorel R, Velitchkova M (2007) Selective photobleaching of chlorophylls and carotenoids in photosystem I particles under high-light treatment. Photochem Photobiol 83:1301–1307

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker R, Gunther C (2004) The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food Sci Tech 15:484–488

    Article  CAS  Google Scholar 

  • Bang H, Davis AR, Kim S, Leskovar DI, King SR (2010) Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J Am Soc Hortic Sci 5:362–368

    Article  Google Scholar 

  • Bartley GE, Scolnik PA, Beyer P (1999) Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and zeta-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur J Biochem 259:396–403

    Article  CAS  PubMed  Google Scholar 

  • Beltrán J, Kloss B, Hosler JP, Geng J, Liu A, Modi A, Dawson JH, Sono M, Shumskaya M, Ampomah-Dwamena C (2015) Control of carotenoid biosynthesis through a heme-based cis-trans isomerase. Nat Chem Biol 11(8):598–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breitenbach J, Sandmann G (2005) ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 220:785–793

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15(5):266–274

    Article  CAS  PubMed  Google Scholar 

  • Chai C, Fang J, Liu Y, Tong H, Gong Y, Wang Y, Liu M, Wang Y, Qian Q, Chen Z et al (2011) ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Mol Biol 75(3):211–221

  • Chen Y, Li F, Wurtzel ET (2010) Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol 153:66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FX Jr, Sun Z, Chamovit D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the Cyanobacterium synechococcus sp strain pcc7942. Plant Cell 6(8):1107–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    Article  CAS  PubMed  Google Scholar 

  • Edwards AJ, Vinyard BT, Wiley ER, Brown ED, Collins JK, Perkins-Veazie P, Baker RA, Clevidence BA (2003) Consumption of watermelon juice increases plasma concentrations of lycopene and beta-carotene in humans. J Nutr 133:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Enfissi EM, Nogueira M, Bramley PM, Fraser PD (2017) The regulation of carotenoid formation in tomato fruit. Plant J 89:774–788

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Shi L, Peng G, Liu H, Wang X, Luan F, Zhang Q, Dai Z (2020) Expression of ClPAP and ClPSY1 in watermelon correlates with chromoplast differentiation, carotenoid accumulation, and flesh color formation. Sci Hortic 270:109437

  • Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol 163(2):986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Giliberto L, Rosati C (2002) Carotenoid isomerase: a tale of light and isomers. Trends in Plant Sci 7(10):427–429

    Article  CAS  Google Scholar 

  • Grassi S, Piro G, Lee JM, Zheng Y, Fei Z, Dalessandro G et al (2013) Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genom 14:781

    Article  CAS  Google Scholar 

  • Gruszecki WI, Strzałka K (2005) Carotenoids as modulators of membrane physical properties. Biochim Biophys Acta 1740:108–115

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G, Jiao C, Zheng Y, Yang W, Fei Z et al (2015) Comparative transcriptiome analysis of cultivated and wild watermelon during fruit development. PLoS ONE 10:e0130267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J et al (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51:1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Harding R, Shropshire W (1980) Photocontrol of carotenoid biosynthesis. Annu Rev Plant Biol 31(1):217–238

    Article  CAS  Google Scholar 

  • Hashimoto H, Uragami C, Cogdell RJ (2016) Carotenoids and photosynthesis. Subcell Biochem 79:111–139

    Article  CAS  PubMed  Google Scholar 

  • Henderson WR, Scott GH, Wehner TC (1998) Interaction of flesh color genes in watermelon. J Hered 89:50–53

    Article  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4(3):210–218

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K, Krupinska K (1993) Control of carotenoid synthesis by light. Method Enzymol 214C:175–184

    Article  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson T, Ohad I, Beyer P, Hirschberg J (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janick-Buckner D, O’Neal J, Joyce E, Buckner B (2001) Genetic and biochemical analysis of the y9 gene of maize, a carotenoid biosynthetic gene. Maydica 46:41–46

    Google Scholar 

  • Kang BS, Zhao WE, Hou YB, Tian P (2010) Expression of carotenogenic genes during the development and ripening of watermelon fruit. Sci Hortic 124:368–375

    Article  CAS  Google Scholar 

  • Lado J, Alós E, Manzi M, Cronje PJR, Gómez-Cadenas A, Rogrigo MJ, Zacarías L (2019) Light regulation of carotenoid biosynthesis in the peel of mandarin and sweet orange fruits. Front Plant Sci 10:1228

    Article  Google Scholar 

  • Lewinsohn E, Sitrit Y, Bar E, Azula Y, Ibdah M, Meir A, Yosef E, Zamir D, Tadmor Y (2005) Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Tech 16(9):407–415

    Article  CAS  Google Scholar 

  • Li L, Yuan H (2013) Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 539:102–109

    Article  CAS  PubMed  Google Scholar 

  • Li F, Murillo C, Wurtzel ET (2007) Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol 144(2):1181–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Shao Z, Zhang M, Wang Q (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8:28–39

    Article  CAS  PubMed  Google Scholar 

  • Llorente B, D’Andrea L, Rodríguez-Concepción M (2016) Evolutionary recycling of light signaling components in fleshy fruits: new insights on the role of pigments to monitor ripening. Front Plant Sci 7:1–7

    Article  Google Scholar 

  • Mortensen A, Skibsted LH (1999) Carotenoid photobleaching. Method Enzymol 299:408–421

    Article  CAS  Google Scholar 

  • Nisar N, Li L, Shan L, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    Article  CAS  PubMed  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis. Plant Cell 14(2):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro L, Stange C (2009) Light-dependent regulation of carotenoid biosynthesis in plants. Cienc Inv Agr 36:143–162

    Article  Google Scholar 

  • Rodrigo MJ, Lado J, Alós E, Alquézar B, Dery O, Hirschberg J, Zacarías L (2019) A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the “Pinalate” sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. BMC Plant Biol 19(1):465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Concepción M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D et al (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini RK, Nile SH, Park SW (2015) Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int 76:735–750

  • Sandmann G (1991) Light-dependent switch from formation of poly-cis carotenes to all-trans carotenoids in the Scenedesmus mutant C-6D. Arch Microbiol 155:229–233

    Article  CAS  Google Scholar 

  • Sandra B, Lea V, Ayala M, Galil T, Zohar F, Amnon L, William PW, Yaakov T, Amit G (2017) Genetic map** of a major codominant QTL associated with β-carotene accumulation in watermelon. Mol Breeding 37(12):146–146

    Article  CAS  Google Scholar 

  • Schofield A, Paliyath G (2005) Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. Plant Physiol Biochem 43:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406

    Article  CAS  PubMed  Google Scholar 

  • Von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleining H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12(3):625–634

    Article  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28(4):663–692

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Guo S, Tian S, Zhang J, Ren Y, Sun H, Gong G, Zhang H, Xu Y (2017) Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution. Plos One 12(6):e0179944

  • Welsch R, Beyer P, Hugueney P, Kleinig H, Von Lintig J (2000) Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211(6):846–854

    Article  CAS  PubMed  Google Scholar 

  • Wurtzel ET (2004) Genomics, genetics, and biochemistry of maize carotenoid biosynthesis. In: Romeo J (ed) Recent advances in phytochemistry, vol 38. Elsevier Ltd., New York, pp 85–110

    Google Scholar 

  • Wurtzel ET (2019) Changing form and function through carotenoids and synthetic biology. Plant Physiol 179:830–843

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Zhang J, Nageswaran D, Li L (2015) Carotenoid metabolism and regulation in horticultural crops. Hortic Res 2:15036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan P, Umer MJ, He N, Zhao S, Liu W (2021) Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). BMC Plant Biol 21(1):203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guo S, Ren Y, Zhang H, Gong G, Zhou M, Wang G, Zong M, He H, Liu F et al (2017) High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol 213:1208–1221

  • Zhang J, Sun H, Guo S, Ren Y, Li M, Wang J, Zhang H, Gong G, Xu Y (2020) Decreased protein abundance of lycopene β- cyclase contributes to red flesh in domesticated watermelon. Plant Physiol 183:1771–1183

Download references

Acknowledgements

We thank Dr. Li Li of Cornell University for providing the pAC-ZETA plasmid.

Funding

This research was supported financially by grants from the National Natural Science Foundation of China (31772329 and 31930096), the Ministry of Agriculture and Rural Affairs of China (Grant No. CARS-25), the Bei**g Scholar Program (Grant No. BSP026 and YBSP019), Innovation and Development Program of Bei**g Vegetable Research Center (KYCX202001-08), Key Project of Science and Technology of Ningbo (2019B10007) and Bei**g Agriculture Innovation Consortium (BAIC10-2021).

Author information

Authors and Affiliations

Authors

Contributions

JZ performed most of the experiments and contributed to the writing; HS and SG performed most of the bioinformatics analysis; YR, ML, JW and YY provided technical assistance to JZ; HZ and GG supervised the experiments; HH performed the HPLC analysis; CZ performed the light treat analysis; YX managed the study and agrees to serve as the author responsible for contact and ensures communication.

Corresponding author

Correspondence to Yong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Amnon Levi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Sun, H., Guo, S. et al. ClZISO mutation leads to photosensitive flesh in watermelon. Theor Appl Genet 135, 1565–1578 (2022). https://doi.org/10.1007/s00122-022-04054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04054-7

Navigation