Log in

Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A single recessive powdery mildew resistance gene Pm61 from wheat landrace Xuxusanyuehuang was mapped within a 0.46-cM genetic interval spanning a 1.3-Mb interval of the genomic region of chromosome arm 4AL.

Abstract

Epidemics of powdery mildew incited by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt) have caused significant yield reductions in many wheat (Triticum aestivum)-producing regions. Identification of powdery mildew resistance genes is required for sustainable improvement of wheat for disease resistance. Chinese wheat landrace Xuxusanyuehuang was resistant to several Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations produced by crossing Xuxusanyuehuang to susceptible cultivar Mingxian 169 revealed that the resistance of Xuxusanyuehuang was controlled by a single recessive gene. Bulked segregant analysis and simple sequence repeat (SSR) map** placed the gene on chromosome bin 4AL-4-0.80-1.00. Comparative genomics analysis was performed to detect the collinear genomic regions of Brachypodium distachyon, rice, sorghum, Aegilops tauschii, T. urartu, and T. turgidum ssp. dicoccoides. Based on the use of 454 contig sequences and the International Wheat Genome Sequence Consortium survey sequence of Chinese Spring wheat, four EST-SSR and seven SSR markers were linked to the gene. An F5 recombinant inbred line population derived from Xuxusanyuehuang × Mingxian 169 cross was used to develop the genetic linkage map. The gene was localized in a 0.46-cM genetic interval between Xgwm160 and **csx79 corresponding to 1.3-Mb interval of the genomic region in wheat genome. This is a new locus for powdery mildew resistance on chromosome arm 4AL and is designated Pm61.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  PubMed  Google Scholar 

  • Belova T, Zhan B, Wright J, Caccamo M, Asp T, Simkova H, Kent M, Bendixen C, Panitz F, Lien S, Dolezel J, Olsen OA, Sandve SR (2013) Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genom 14:222

    Article  CAS  Google Scholar 

  • Cao SQ, Luo HS, Wu CP, ** SL, ** MG, Jia QZ, Zhang B, Huang J, Wang XM (2010) Evaluation of 193 Gansu landraces on wheat to powdery mildew. Gansu Agric Sci Technol 5:8–10

    Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, **ault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Gouis JL, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury JM, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

    Article  CAS  PubMed  Google Scholar 

  • Coordinators NR (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44:7–19

    Google Scholar 

  • Fu BS, Chen Y, Li N, Ma HQ, Kong ZX, Zhang LX, Jia HY, Ma ZQ (2013) pmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace **aohongpi. Theor Appl Genet 126:913–921

    Article  CAS  PubMed  Google Scholar 

  • Fu BS, Zhang ZL, Zhang QF, Wu XY, Wu JZ, Cai SB (2017) Identification and map** of a new powdery mildew resistance allele in the Chinese wheat landrace Hongyoumai. Mol Breed 37:133

    Article  CAS  Google Scholar 

  • Geng MM, Zhang J, Peng FX, Liu X, Lv XD, Mi YY, Li YH, Li F, ** of MlIW30, a novel powdery mildew resistance gene derived from wild emmer wheat. Mol Breed 36:130

    Article  CAS  Google Scholar 

  • Guo J, Liu C, Zhai SN, Li HS, Liu AF, Cheng DG, Han R, Liu JJ, Kong LR, Zhao ZD, Song JM (2017) Molecular and physical map** of Pm resistance genes—a review. Agric Sci Technol 18:965–970

    Google Scholar 

  • Hao YF, Parks R, Cowger C, Chen ZB, Wang YY, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476

    Article  CAS  PubMed  Google Scholar 

  • Hernandez P, Martis M, Dorado G, Pfeifer M, Gálvez S, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, Mayer KFX (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    Article  CAS  PubMed  Google Scholar 

  • Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ, Kianian PMA, Simons K, Gehlhar S, Rust JL, Syamala RR, Obeori K, Bhamidimarri S, Karunadharma P, Chao S, Anderson OD, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Akhunov ED, Dvořák J, Miftahudin Ross K, Gustafson JP, Radhawa HS, Dilbirligi M, Gill KS, Peng JH, Lapitan NLV, Greene RA, Bermudez-Kandianis CE, Sorrells ME, Feril O, Pathan MS, Nguyen HT, Gonzalez-Hernandez JL, Conley EJ, Anderson JA, Choi DW, Fenton D, Close TJ, McGuire PE, Qualset CO, Kianian SF (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168:687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsam SLK, Zeller FJ (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In: Belanger RR, Bushnell WR, Dik AJ, Carver DL (eds) The powdery mildews: a comprehensive treatise. American Phytopathological Society, St. Paul, MN, pp 219–238

    Google Scholar 

  • Hsam SLK, Huang XQ, Zeller FJ (2001) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 6. Alleles at the Pm5 locus. Theor Appl Genet 102:127–133

    Article  CAS  Google Scholar 

  • Hu WG, Wang YJ, Wang CY, Ji WQ (2007) Genetic analysis on the powdery mildew resistance of Shanxi wheat landraces. J Triticeae Crops 27:341–344

    CAS  Google Scholar 

  • Hu TZ, Li HJ, ** and chromosomal location of powdery mildew resistance gene in wheat cultivar Tangmai 4. Acta Agron Sin 34:1193–1198

    CAS  Google Scholar 

  • Huang XQ, Röder MS (2004) Molecular map** of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular map** of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  • Huang XQ, Wang LX, Xu MX, Röder MS (2003) Microsatellite map** of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.). Theor Appl Genet 106:858–865

    Article  CAS  PubMed  Google Scholar 

  • International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  CAS  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nsuda S, Endo TR (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  CAS  PubMed  Google Scholar 

  • Jakobson I, Reis D, Tiidema A, Peusha H, Timofejeva L, Valárik M, Kladivová M, Simková H, Doležel J, Järve K (2012) Fine map**, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat–Triticum militinae introgression line. Theor Appl Genet 125:609–623

    Article  PubMed  Google Scholar 

  • Jia JZ, Zhao SC, Kong XY, Li YR, Zhao GY, He WM, Appels R, Pfeifer M, Tao Y, Zhang XY, **g RL, Zhang C, Ma YZ, Gao LF, Gao C, Spannagl M, Mayer KFX, Li D, Pan SK, Zheng FY, Hu Q, **a XC, Li JW, Liang QS, Chen J, Wicker T, Gou CY, Kuang HH, He GY, Luo YD, Keller B, **a QJ, Lu P, Wang JY, International Wheat Genome Sequencing Consortium, Zou HF, Zhang RZ, Xu JY, Gao JL, Middleton C, Quan ZW, Liu GM, Wang J, Yang HM, Liu X, He ZH, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Wang XM, Song FJ, Wu CP, Wu XF, Zhang N, Zhou Y, Zhang XY (2011) Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agron Sin 37:943–954

    CAS  Google Scholar 

  • Liang Y, Zhang DY, Ouyang SH, **e JZ, Wu QH, Wang ZZ, Cui Y, Lu P, Zhang D, Liu ZJ, Zhu J, Chen YX, Zhang Y, Luo MC, Dvořák J, Huo NX, Sun QX, Gu YQ, Liu ZY (2015) Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii. Theor Appl Genet 128:1617–1629

    Article  CAS  PubMed  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual, 3rd edn. Whitehead Institute for Medical Research, Cambridge, MA, USA

  • Ling HQ, Zhao SC, Liu DC, Wang JY, Sun H, Zhang C, Fan HJ, Li D, Dong LL, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, Zhang BR, Wu HJ, Tang DZ, Shen QH, Xue PY, Zou SH, Wang XJ, Liu X, Wang FM, Yang YP, An XL, Dong ZY, Zhang KP, Zhang XQ, Luo MC, Dvořák J, Tong YP, Wang J, Yang HM, Li ZS, Wang DW, Zhang AM, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Ma B, Shi XL, Liu H, Dong LL, Sun H, Cao YH, Gao Q, Zheng SS, Li Y, Yu Y, Du HL, Qi M, Li Y, Lu HW, Yu H, Cui Y, Wang N, Chen CL, Wu HL, Zhao Y, Zhang JC, Li YW, Zhou WJ, Zhang BR, Hu WJ, Eijk MJT, Tang JF, Witsenboer HMA, Zhao SC, Li ZS, Zhang AM, Wang DW, Liang CZ (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF, Yang T (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219

    Article  CAS  Google Scholar 

  • Liu SC, Zheng DS, Cao YS, Song CH, Chen MY (2000) Genetic diversity of landrace and bred varieties of wheat in China. Sci Agric Sin 33:20–24

    CAS  Google Scholar 

  • Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li WL, Gill BS, Bevan MW, Šimková H, Doležel J, Song WN, Lazo GR, Anderson OD, Dvořák J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire PE, Liu S, Long H, Ramasamy RK, Rodriguez JC, Van SL, Yuan L, Wang Z, **a Z, **ao L, Anderson OD, Ouyang S, Liang Y, Zimin AV, Pertea G, Qi P, Bennetzen JL, Dai X, Dawson MW, Müller HG, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer KFX, Lu FH, Bevan MW, Leroy P, Li P, You FM, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg SL, Devos KM, Dvořák J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma HQ, Kong ZX, Fu BS, Li N, Zhang LX, Jia HY, Ma ZQ (2011) Identification and map** of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris C, Appels R, **a XC (2013) Catalogue of gene symbols for wheat. In: Ogihara Y (ed) Proceeding of the 12th international wheat genetics symposium, Yokohama, Japan, 8–13 September 2013

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease–resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miftahudin Ross K, Ma XF, Mahmoud AA, Layton J, Milla MAR, Chikmawati T, Ramalingam J, Feril O, Pathan MS, Surlan Momirovic G, Kim S, Chema K, Fang P, Haule L, Struxness H, Birkes J, Yaghoubian C, Skinner R, McAllister J, Nguyen V, Qi LL, Echalier B, Gill BS, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvořák J, Dilbirligi M, Gill KS, Peng JH, Lapitan NLV, Bermudez-Kandianis CE, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Lazo GR, Chao S, Anderson OD, Gonzalez-Hernandez J, Conley EJ, Anderson JA, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Nguyen HT, Gustafson JP (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Kawaura K, Shimosaka E, Kawakami N, Shin IT, Kohara Y, Yamazaki Y, Ogihara Y (2006) Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol Genet Genomics 276:304–312

    Article  CAS  PubMed  Google Scholar 

  • Morgounov A, Tufan HA, Sharma R, Akin B, Bagci A, Braun HJ, Kaya Y, Keser M, Payne TS, Sonder K, McIntosh R (2012) Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur J Plant Pathol 132:323–340

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2013) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer, Berlin, pp 241–271

    Google Scholar 

  • Ouyang SH, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo NX, Liang Y, ** of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS ONE 9:e100160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, WangY Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvořák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, Rota CML, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Sgill K, Mahmoud AA, Ma XF, Miftahudin Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin B, Cao AZ, Wang HY, Chen TT, You FM, Liu YY, Ji JH, Liu DJ, Chen PD, Wang XE (2011) Collinearity-based marker mining for the fine map** of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218

    Article  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samobor V, Vukobratović M, Jošt M (2006) Effect of powdery mildew attack on quality parameters and experimental bread baking of wheat. Acta Agric Slov 87:381–391

    Google Scholar 

  • Sheng BQ, Duan XY, Zhou YL, Wang JX (1992) Studies on the classification of some wheat landraces resistant to powdery mildew. Crop Germplasm Resour 4:33–35

    Google Scholar 

  • Shi JX, Qiao YL, Yang QW, He BR, Ji WQ, Weng YJ (2005) Homology analysis of A and B genomes between wild emmer (T. dicoccoides) and common wheat (T. aestivum). Acta Agron Sin 31:723–729

    Google Scholar 

  • Shi QQ, Fan JR, Zhou YL, Zou YF, Duan XY (2015) Triadimefon sensitivity and its correlation with virulence population of Blumeria graminis f. sp. tritici in some wheat growing areas in 2012. Acta Phytopathol Sin 45:181–187

    Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He XY, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Summers RW, Brown JKM (2013) Constraints on breeding for disease resistance in commercially competitive wheat cultivars. Plant Pathol 62(1):115–121

    Article  Google Scholar 

  • Wang XF, Zhang ZS, Liu HY, He WL (1996) Evaluation of resistance and slow-mildewing of some wheat varieties on Henan province. Acta Agric Univ Henanensis 30:160–163

    Google Scholar 

  • Wang ZZ, Cui Y, Chen YX, Zhang DY, Liang Y, Zhang D, Wu QH, ** and genomic region collinearity analysis of the powdery mildew resistance gene Pm41. Theor Appl Genet 127:1741–1751

    Article  CAS  PubMed  Google Scholar 

  • Wang ZZ, Li HW, Zhang DY, Guo L, Chen JJ, Chen YX, Wu QH, ** of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet 128:365–373

    Article  CAS  PubMed  Google Scholar 

  • **ao MG, Song FJ, Jiao JF, Wang XM, Xu HX, Li HJ (2013) Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet 126:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • ** of powdery mildew resistance gene PmTm4 in wheat using comparative genomics. J Integr Agric 16:540–550

    Article  CAS  Google Scholar 

  • **ong EH, Zhu W, Cao Y, Cai SB, Fang XW (1995) A genetic analysis of powdery mildew resistance in three native wheat varieties. J Jiangsu Agric Coll 16:47–50

    CAS  Google Scholar 

  • Xu HX, Yi YJ, Ma PT, Qie YM, Fu XY, Xu YF, Zhang XT, An DG (2015) Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet 128:2077–2084

    Article  CAS  PubMed  Google Scholar 

  • Xu XD, Feng J, Fan JR, Liu ZY, Li Q, Zhou YL, Ma ZH (2018a) Identification of the resistance gene to powdery mildew in Chinese wheat landrace Baiyouyantiao. J Integr Agric 17:37–45

    Article  CAS  Google Scholar 

  • Xu XD, Li Q, Ma ZH, Fan JR, Zhou YL (2018b) Molecular map** of powdery mildew resistance gene PmSGD in Chinese wheat landrace Shangeda using RNA-seq with bulk segregant analysis. Mol Breed 38:23

    Article  CAS  Google Scholar 

  • Xue F, Zhai WW, Duan XY, Zhou YL, Ji WQ (2009) Microsatellite map** of a powdery mildew resistance gene in wheat landrace **aobaidong. Acta Agron Sin 35:1806–1811

    CAS  Google Scholar 

  • Xue F, Wang CY, Li C, Duan XY, Zhou YL, Zhao NJ, Wang YJ, Ji WQ (2012) Molecular map** of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet 125:1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Zhai WW, Duan XY, Zhou YL, Ma HQ (2008) Inheritance of resistance to powdery mildew in four Chinese landraces. Plant Protect 34:37–40

    Google Scholar 

  • Zhang D, Ouyang SH, Wang LL, Yu C, Wu QH, Liang Y, Wang ZZ, ** revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL. J Integr Agric 14:603–609

    Article  CAS  Google Scholar 

  • Zhao GY, Zou C, Li K, Wang K, Li TB, Gao LF, Zhang XX, Wang HJ, Yang ZJ, Liu X, Jiang WK, Mao L, Kong XY, Jiao YN, Jia JZ (2017) The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants 3:946–955

    Article  CAS  PubMed  Google Scholar 

  • Zhou RH, Zhu ZD, Kong XY, Huo NX, Tian QZ, Li P, ** CY, Dong YC, Jia JZ (2005) Development of wheat near-isogenic lines for powdery mildew resistance. Theor Appl Genet 110:640–648

    Article  CAS  PubMed  Google Scholar 

  • Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL (2017) The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience 6:1–7

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. R. L. Conner of Morden Research and Developmental Center, Agriculture and Agri-Food Canada for his critical review of the manuscript, Drs. W. J. Raupp and B. S. Gill of Wheat Genetics Resource Centre, Kansas State University, USA, for providing the Chinese Spring aneuploid and deletion lines, and J Zou for technical assistance. Financial support of this research by the National Natural Science Foundation of China (31501310 and 31471491), the National Key Research and Development Program of China (2017YFD0101000), Scientific and Technological Research Project of Henan Province of China (172102110110), the CAAS Innovation Team and the National Engineering Laboratory of Crop Molecular Breeding, Henan Province Young College Key Teacher Subsidy Program (2017GGJS177) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Liu, **gting Li or Hongjie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Steven S. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Hu, J., Song, W. et al. Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor Appl Genet 131, 2085–2097 (2018). https://doi.org/10.1007/s00122-018-3135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3135-1

Navigation