Log in

A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Low temperature is among the critical environmental factors that limit soybean production. To elucidate the genetic basis for chilling tolerance and identify useful markers, we conducted quantitative trait loci (QTL) analysis of seed-yielding ability at low temperature in soybean (Glycine max), using artificial climatic environments at usual and low temperatures and recombinant inbred lines derived from a cross between two contrasting cultivars in terms of chilling tolerance. We identified a QTL of a large effect (LOD > 15, r 2 > 0.3) associated with seed-yielding ability only at low temperature. The QTL was mapped near marker Sat_162 on linkage group A2, where no QTL for chilling tolerance has previously been identified. The tolerant genotype did not increase the pod number but maintained the seed number per pod and single seed weight, namely, the efficiency of seed development at low temperature. The effect of the QTL was confirmed in a segregating population of heterogeneous inbred families, which provided near-isogenic lines. The genomic region containing the QTL also influenced the node and pod numbers regardless of temperature condition, although this effect was not primarily associated with chilling tolerance. These results suggest the presence of a new major genetic factor that controls seed development specifically at low temperature. The findings will be useful for marker-assisted selection as well as for understanding of the mechanism underlying chilling tolerance in reproductive organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andaya VC, Mackill DJ (2003a) Map** of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:2579–2585

    Article  PubMed  CAS  Google Scholar 

  • Andaya VC, Mackill DJ (2003b) QTL conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross. Theor Appl Genet 106:1084–1090

    PubMed  CAS  Google Scholar 

  • Awal MA, Ikeda T (2003) Controlling canopy formation, flowering, and yield in field-grown stands of peanut (Arachis hypogaea L.) with ambient and regulated soil temperature. Field Crop Res 81:121–132

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trend Plant Sci 12:444–451

    Article  CAS  Google Scholar 

  • Churchill G, Doerge R (1994) Empirical threshold values for quantitative trait map**. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Desclaux D, Huynh TT, Roumet P (2000) Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Sci 40:716–722

    Google Scholar 

  • Fehr WE, Caviness CE, Burmood PT, Pennington J (1971) Stage of development description of soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931

    Google Scholar 

  • Funatsuki H, Matsuba S, Kawaguchi K, Murakami T, Sato Y (2004) Methods for evaluation of soybean chilling tolerance at the reproductive stage under artificial climatic conditions. Plant Breed 123:558–563

    Article  Google Scholar 

  • Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M (2005) Map** of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet 111:851–861

    Article  PubMed  CAS  Google Scholar 

  • Funatsuki H, Hajika M, Hagihara S, Yamada T, Tanaka Y, Tsuji H, Ishimoto M, Fu**o K (2008) Confirmation of the location and the effects of a major QTL controlling pod dehiscence, qPDH1, in soybean. Breed Sci 58:63–69

    Article  CAS  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1996) SAS/STAT user’s guide, vols 1 and 2, version 6, 4th edn. Cary, USA

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Map** of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Karim A, Fukamachi H, Komori S, Ogawa K, Hidaka T (2003) Growth, yield and photosynthetic activity of Vigna radiata L. Grown at different temperature and light levels. Plant Prod Sci 6:43–49

    Article  Google Scholar 

  • Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Ando I, Sato Y (2007) A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet 111:593–600

    Article  Google Scholar 

  • Kurosaki H, Yumoto S (2003) Effects of low temperature and shading during flowering on the yield components in soybeans. Plant Prod Sci 6:17–23

    Article  Google Scholar 

  • Kurosaki H, Yumoto S, Matsukawa I (2004) Correlation of cold-weather tolerance with pubescence color and flowering time in yellow hilum soybeans in Hokkaido. Breed Sci 54:303–311

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Map** Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Leipner J, Jompuk C, Camp KH, Stamp P, Fracheboud Y (2008) QTL studies reveal little relevance of chilling-related seedling traits for yield in maize. Theor Appl Genet 116:555–562

    Article  PubMed  Google Scholar 

  • Leung H (2008) Stressed genomics—bringing relief to rice fields. Curr Opin Plant Biol 11:201–208

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic map**. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Morrison MJ, Voldeng HD, Guillemette RJD (1994) Soybean pubescence color influences seed yield in cool-season climates. Agron J 86:796–799

    Google Scholar 

  • Munoz-Perea CG, Teran H, Allen RG, Wright JL, Westermann DT, Singh SP (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46:2111–2120

    Article  Google Scholar 

  • Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative genetics. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. American Soc Agron Inc Crop Sci Soc America Inc Soil Sci Soc America Inc Publishers, Madison, pp 137–233

    Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  PubMed  CAS  Google Scholar 

  • Rainey KM, Griffiths PD (2005) Diallel analysis of yield components of snap beans exposed to two temperature stress environments. Euphytica 142:43–53

    Article  Google Scholar 

  • Raper CD Jr, Kramer PJ (1987) Stress physiology. In: Wilcox JR (ed) Soybeans: improvement, production, and uses, 2nd edn. American Soc Agronomy, Inc. Crop Sci Soc America. Inc. Soil Sci Soc America Inc. Publishers, Madison, pp 589–642

    Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Miura K, Nagano K, Hayano-Saito Y, Araki H, Kato A (2001) Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103:862–868

    Article  CAS  Google Scholar 

  • Satake T, Hayase H (1970) Male sterility caused by cooling treatment at the young microspore stage in rice plants. V. Estimation of pollen developmental stage and the most sensitive stage to coolness. Proc Crop Sci Soc Jpn 39:468–473

    Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  PubMed  CAS  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Google Scholar 

  • Shirai S, Yumoto S, Matsukawa I, Tanaka Y, Hagihara S, Kurosaki H, Sumida S, Yamazaki T, Suzuki C, Ohnishi S (2004) A new soybean variety “Toyoharuka” (in Japanese). http://www.affrc.go.jp/ja/research/seika/data_nics/h16/d16006

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  PubMed  CAS  Google Scholar 

  • Takahashi R, Asanuma S (1996) Association of t gene with chilling tolerance in soybean. Crop Sci 36:559–562

    Google Scholar 

  • Takahashi R, Benitez ER, Funatsuki H, Ohnishi S (2005) Soybean maturity and pubescence color genes improve chilling tolerance at high latitude regions. Crop Sci 45:1387–1393

    Article  CAS  Google Scholar 

  • Takeuchi Y, Hayasaka H, Chiba B, Tanaka I, Shimano T, Yamagishi M, Nagano K, Sasaki T, Yano M (2001) Map** quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate Japonica rice. Breed Sci 51:191–197

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for develo** near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Wang SCJ, Basten CJ, Zeng Z-B (2005) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1a is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K (2001) An informative linkage map of soybean reveals QTL for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8:61–72

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005) Fine map** of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet 110:634–639

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trend Plant Sci 9:426–432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Y. Sato for his encouragement and support for this work. The technical assistance of R. Narita, S. Furuhata, K. Yoshida and R. Sugisawa is gratefully acknowledged. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 18580011) and by a grant from the National Agricultural Research Organization (Development of Innovative Crops through the Molecular Analysis of Useful Genes) to H. F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Funatsuki.

Additional information

Communicated by H. T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, T., Ohnishi, S., Senda, M. et al. A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). Theor Appl Genet 118, 1477–1488 (2009). https://doi.org/10.1007/s00122-009-0996-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0996-3

Keywords

Navigation