Log in

Biologische vaskularisierte Matrix (BioVaM)

Ein Ansatz zur Lösung des Perfusionsproblems im Tissue Engineering

Biological vascularized matrix (BioVaM): a new method for solving the problem of perfusion in tissue engineering

  • Leitthema
  • Published:
Der Urologe, Ausgabe A Aims and scope Submit manuscript

Zusammenfassung

Mit Hilfe einer neuen Technik wird eine azelluläre Matrix aus einem porcinen Dünndarmsegment unter Erhaltung des mesenterialen Arterien- und Venenstamms gewonnen. Eine erneute Besiedelung dieser biologischen vaskularisierten Matrix (BioVaM) mit funktionellen Zellen, d. h. primären glatten Muskel- und Urothelzellen, sowie des Gefäßbetts mit endothelialen Vorläuferzellen resultiert in einem mittels Tissue Engineering gewonnenen und durchbluteten Gewebe für die Rekonstruktion und Augmentation der Harnblase. Erste erfolgreiche Kurzzeitimplantationen dieser Matrix im Schweinemodell zur Beurteilung der frühen Implantatperfusion nach Gefäßanastomose auf den Empfängerorganismus werden vorgestellt.

Abstract

A new technique is presented to harvest an acellular matrix from a porcine small bowel segment preserving the mesenteric arterial and venous pedicles. Reseeding of this biological vascularized matrix (BioVaM) with functional cells, i.e. smooth muscle and urothelial cells isolated from the urinary tract, and resurfacing of its vascular structures with endothelial precursor cells results in a vascularized tissue engineered graft for reconstruction and augmentation of the urinary bladder. First promising short term implantation experiments using a porcine model for the evaluation of early graft perfusion after vascular anastomosis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3a, b
Abb. 4a, b

Literatur

  1. Assmus B, Schachinger V, Teupe C et al. (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106: 3009–3017

    Article  PubMed  Google Scholar 

  2. Atala A (2003) Regenerative medicine and urology. BJU Int 92 [Suppl 1]: 58–67

    Article  Google Scholar 

  3. Bartsch GJ, Atala A (2003) Tissue engineering in der Urologie. Urologe A 42: 354–365

    PubMed  Google Scholar 

  4. Cheng EY, Kropp BP (2000) Urologic tissue engineering with small-intestinal submucosa: potential clinical applications. World J Urol 18: 26–30

    CAS  PubMed  Google Scholar 

  5. Cross WR, Thomas DF, Southgate J (2003) Tissue engineering and stem cell research in urology. BJU Int 92: 165–171

    CAS  PubMed  Google Scholar 

  6. Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72: 577–591

    Article  CAS  PubMed  Google Scholar 

  7. Gabouev AI, Schultheiss D, Mertsching H et al. (2003) In vitro construction of urinary bladder wall using porcine primary cells reseeded on acellularized bladder matrix and small intestinal submucosa. Int J Artif Organs 26: 935–942

    CAS  PubMed  Google Scholar 

  8. Hafez AT, Bagli DJ, Bahoric A et al. (2003) Aerosol transfer of bladder urothelial and smooth muscle cells onto demucosalized colonic segments: a pilot study. J Urol 169: 2316–2319

    Article  PubMed  Google Scholar 

  9. Hodde JP, Record RD, Tullius RS, Badylak SF (2002) Retention of endothelial cell adherence to porcine-derived extracellular matrix after disinfection and sterilization. Tissue Eng 8: 225–234

    Article  CAS  PubMed  Google Scholar 

  10. Kanematsu A, Yamamoto S, Noguchi T, Ozeki M, Tabata Y, Ogawa O (2003) Bladder regeneration by bladder acellular matrix combined with sustained release of exogenous growth factor. J Urol 170: 1633–1638

    Article  CAS  PubMed  Google Scholar 

  11. Kaushal S, Amiel GE, Guleserian KJ et al. (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7: 1035–1040

    Article  CAS  PubMed  Google Scholar 

  12. Kawamoto A, Tkebuchava T, Yamaguchi J et al. (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107: 461–468

    Article  PubMed  Google Scholar 

  13. Kropp BP, Rippy MK, Badylak SF et al. (1996) Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J Urol 155: 2098–2104

    Article  CAS  PubMed  Google Scholar 

  14. Meezan E, Hjelle JT, Brendel K (1975) A simple, versatile, nondisruptive method for the isolation of morphologically and chemicaly pure basement membranes from several tissues. Life Sci 17: 1721–1732

    Article  CAS  PubMed  Google Scholar 

  15. Nomi M, Atala A, Coppi PD, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Aspects Med 23: 463–483

    CAS  PubMed  Google Scholar 

  16. Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17: 149–155

    Article  CAS  PubMed  Google Scholar 

  17. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9: 702–712

    Article  CAS  PubMed  Google Scholar 

  18. Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11: 275–281

    CAS  PubMed  Google Scholar 

  19. Schoeller T, Lille S, Stenzl A et al. (2001) Bladder reconstruction using a prevascularized capsular tissue seeded with urothelial cells. J Urol 165: 980–985

    Article  CAS  PubMed  Google Scholar 

  20. Vasa M, Fichtlscherer S, Adler K et al. (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103: 2885–2890

    CAS  PubMed  Google Scholar 

  21. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67: 478–491

    Article  CAS  PubMed  Google Scholar 

  22. Walles T, Herden T, Haverich A, Mertsching H (2003) Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials 24: 1233–1239

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Kropp BP, Moore P et al. (2000) Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol 164: 928–934

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schultheiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultheiss, D., Gabouev, A.I., Kaufmann, P.M. et al. Biologische vaskularisierte Matrix (BioVaM). Urologe [A] 43, 1223–1228 (2004). https://doi.org/10.1007/s00120-004-0702-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-004-0702-7

Schlüsselwörter

Keywords

Navigation