Log in

Neurochirurgische Standards bei tiefer Hirnstimulation

Empfehlungen der Deutschen Arbeitsgemeinschaft Tiefe Hirnstimulation

Neurosurgical standards in deep brain stimulation

Consensus recommendations of the German Deep Brain Stimulation Association

  • Aktuelles
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Voraussetzung für die therapeutische Anwendung der tiefen Hirnstimulation (THS) ist eine stereotaktisch-neurochirurgische Operation mit Implantation von Hirnelektroden in subkortikale Zielstrukturen des Gehirns und Verbindung dieser Elektroden mit einem subkutan implantierten Impulsgeber. Während der vergangenen 10–15 Jahre wurden dafür bestimmte Minimalanforderungen an technische Ausstattung und prozedurale Vorgehensweisen formuliert, die teilweise über systematische Untersuchungen auch quantitativ abgesichert sind. Nur durch richtiges Patientenmanagement, einen hohen technischen Aufwand sowie eine geeignete Operationstechnik können Komplikationen, die als unmittelbare Folge des durchgeführten Eingriffs zu sehen sind, auf ein Minimum reduziert werden. Hochauflösende Bildgebung ist die Basis für Zielpunktbestimmung, Zugangsplanung und Lagekontrolle der implantierten Hirnelektroden bzw. dient postoperativ dem Ausschluss einer iatrogenen intrazerebralen Blutung. Die Qualität der Operationsplanung hängt zusätzlich in hohem Maß von den Möglichkeiten der Bildbearbeitung und -betrachtung ab, die eine spezifisch dafür entwickelte Planungssoftware zulässt. Weitere Bereiche, für die Standards definiert wurden, betreffen die intraoperativ durchzuführenden elektrophysiologischen und klinischen Untersuchungen sowie allgemeine chirurgische Maßnahmen, die bei der Implantation der THS-Stimulationssysteme zu beachten sind. Diese Übersichtsarbeit beschreibt und bewertet unter Berücksichtigung der Fachliteratur die Anforderungen, die an die genannten Systemkomponenten und Arbeitsschritte zu stellen sind.

Summary

Surgery combining stereotactically guided implantation of brain electrodes in subcortical key structures of the brain with the connection of these brain electrodes to subcutaneously implanted impulse generators is one precondition for the therapeutic application of deep brain stimulation (DBS). During the last 10–15 years minimal requirements concerning this surgery have been formulated, addressing in particular technical equipment and operational procedures and being also in parts supported quantitatively by systematic investigations. Only appropriate patient management, high technical standards and an adequate surgical technique can minimize the frequency of those complications, which are supposed to be directly caused by surgery. High-resolution imaging is the basis for target definition, determination of the surgical approach, documentation of final electrode position and postoperative exclusion of iatrogenic intracerebral haemorrhage. In addition, the quality of treatment planning depends largely on the image processing and viewing possibilities provided by specific planning software. Further issues, for which standards are defined, address electrophysiological and clinical examinations to be performed intraoperatively and general surgical measures, which should be considered during implantation of DBS systems. This review summarizes and evaluates requirements imposed on the aforementioned system components and working steps, taking into consideration data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bjartmarz H, Rehncrona S (2007) Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 85:235–242

    Article  PubMed  Google Scholar 

  2. Burchiel KJ, Nguyen TT, Coombs BD, Szumoski J (1996) MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames. Stereotact Funct Neurosurg 66:123–136

    Article  PubMed  CAS  Google Scholar 

  3. Ende G, Treuer H, Boesecke R (1992) Optimization and evaluation of landmark-based image correlation. Phys Med Biol 37:261–271

    Article  PubMed  CAS  Google Scholar 

  4. Hunsche S, Sauner D, Maarouf M et al (2004) MR-guided stereotactic neurosurgery – comparison of fiducial-based and anatomical landmark transformation approaches. Phys Med Biol 49:2705–2716

    Article  PubMed  CAS  Google Scholar 

  5. Schuurman PR, de Bie RM, Majoie CB et al (1999) A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery. J Neurosurg 91:911–9114

    Article  PubMed  CAS  Google Scholar 

  6. Schlaier J, Herzog P, Schoedel P et al (2006) Relevance of correction for rotational targeting error in functional neurosurgery. Comput Aided Surg 11:37–42

    Article  PubMed  Google Scholar 

  7. Zonenshayn M, Rezai AR, Mogilner AY et al (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282–329

    Article  PubMed  CAS  Google Scholar 

  8. Richter EO, Hoque T, Halliday W et al (2004) Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson’s disease. J Neurosurg 100:541–546

    Article  PubMed  Google Scholar 

  9. Andrade-Souza YM, Schwalb JM, Hamani C et al (2005) Comparison of 2-dimensional magnetic resonance imaging and 3-planar reconstruction methods for targeting the subthalamic nucleus in Parkinson disease. Surg Neurol 63:357–362

    Article  PubMed  Google Scholar 

  10. Patel NK, Khan S, Gill SS (2008) Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson’s disease. Stereotact Funct Neurosurg 86:153–161

    Article  PubMed  Google Scholar 

  11. Vayssiere N, Hemm S, Cif L et al (2002) Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg 96:673–679

    Article  PubMed  Google Scholar 

  12. Starr PA, Vitek JL, DeLong M, Bakay RA (1999) Magnetic resonance imaging based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–314

    Article  PubMed  CAS  Google Scholar 

  13. Pinsker MO, Volkmann J, Falk D et al (2008) Electrode implantation for deep brain stimulation in dystonia: a fast spin-echo inversion-recovery sequence technique for direct stereotactic targeting of the GPI. Zentralbl Neurochir 69:71–75

    Article  PubMed  CAS  Google Scholar 

  14. Steigerwald F, Hinz L, Pinsker MO et al (2005) Effect of propofol anesthesia on pallidal neuronal discharges in generalized dystonia. Neurosci Lett 386:156–159

    Article  PubMed  CAS  Google Scholar 

  15. Hertel F, Züchner M, Weimar I et al (2006) Implantation of electrodes for deep brain stimulation of the subthalamic nucleus in advanced Parkinson’s disease with the aid of intraoperative microrecording under general anesthesia. Neurosurgery 59:E1138

    Article  PubMed  Google Scholar 

  16. Hariz MI, Fodstad H (1999) Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 72:157–169

    Article  PubMed  CAS  Google Scholar 

  17. Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963

    Article  Google Scholar 

  18. Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78:146–157

    Article  PubMed  Google Scholar 

  19. Palur RS, Berk C, Schulzer M, Honey CR (2002) A metaanalysis comparing the results of pallidotomy performed using microelectrode recording or macroelectrode stimulation. J Neurosurg 96:1058–1062

    Article  PubMed  Google Scholar 

  20. Hamani C, Richter EO, Andrade-Souza Y et al (2005) Correspondence of microelectrode map** with magnetic resonance imaging for subthalamic nucleus procedures. Surg Neurol 63:249–253

    Article  PubMed  Google Scholar 

  21. Lozano AM, Hutchison WD, Tasker RR et al (1998) Microelectrode recordings define the ventral posteromedial pallidotomy target. Stereotact Funct Neurosurg 71:153–163

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Referententätigkeit für die Fa. Medtronic, Minneapolis, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Voges.

Anhang

Anhang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voges, J., Kiening, K., Krauss, J. et al. Neurochirurgische Standards bei tiefer Hirnstimulation. Nervenarzt 80, 666–672 (2009). https://doi.org/10.1007/s00115-009-2698-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-009-2698-0

Schlüsselwörter

Keywords

Navigation