Log in

Circular RNAs: regulators of vascular smooth muscle cells in cardiovascular diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The aberrant expansion and dysfunction of vascular smooth muscle cells (VSMCs) contribute to the occurrence and development of many cardiovascular diseases. Circular RNAs, a new class of non-coding RNAs with the 3′ and 5′ ends covalently linked together due to back-splicing, have recently been revealed to function as new regulators of VSMCs. These circular RNAs mainly act as RNA sponge to downregulate other regulatory non-coding RNAs such as microRNAs, influencing the overgrowth and transformation of VSMCs under pathogenic conditions. The purpose of this review is to summarize how circular RNAs fluctuate their own expression in response to multiple stimuli in vitro and in vivo and how they modulate the phenotypic adaptation, proliferation, migration, apoptosis, and senescence of VSMCs, which in turn affects the progression of cardiovascular diseases. Finally, we highlight the potential of circular RNAs as the biomarkers and therapeutic targets for abnormal VSMCs and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

VSMC:

Vascular smooth muscle cell

CVD:

Cardiovascular disease

ncRNA:

Non-coding RNA

miRNA:

MicroRNA

AS:

Atherosclerosis

circRNA:

Circular RNA

IA:

Intracranial aneurysm

AAA:

Abdominal aortic aneurysm

HPH:

Hypoxic pulmonary hypertension

ecircRNA:

Exonic circRNA

ciRNA:

Circular intronic circRNA

EIciRNA:

Exon intron circRNA

RIP:

RNA Immunoprecipitation

FISH:

Fluorescence in situ hybridization

qRT-PCR:

Quantitative real-time polymerase chain reaction

MCP-1:

Monocyte chemotactic protein-1

VCAM-1:

Vascular cell adhesion molecule-1

ICAM-1:

Intercellular cell adhesion molecule-1

SMMHC:

Cardiac myosin heavy chain

PTEN:

Phosphatase and tensin homolog

Ang II:

Angiotensin II

α-SMA:

α-Smooth muscle actin

Diaph3:

Diaphanous-related formin-3

Nrp1:

Neuropilin-1

IGF1R:

Insulin-like growth factor 1 receptor

PDGF-BB:

Platelet-derived growth factor-BB

HASMC:

Human aortic smooth muscle cell

SM22α:

Smooth muscle 22 alpha

HDAC5:

Histone deacetylase 5

Aggf1:

Angiogenic factors with G patch and FHA domains

MMP9:

Matrix metalloproteinase 9

OPN:

Osteopontin

TXNIP:

Thioredoxin-interacting protein

HCASMC:

Human coronary artery smooth muscle cell

CHD:

Coronary heart disease

AAV9:

Adeno-associated virus 9

TET2:

Ten-eleven translocation 2

5hmC:

5-Hydroxymethylcytosine

TGF-β:

Transforming growth factor-β

NRG-1:

Neuregulin-1

NRG-1-ICD:

Neuregulin-1 intracellular domain

PASMC:

Pulmonary arterial smooth muscle cell

CAMK2D:

Calcium/calmodulin-dependent kinase II-delta

CNN3:

Calponin 3

SYK:

Spleen associated tyrosine kinase

FOXO1:

Forkhead box protein O1

SP1:

Specificity protein 1

Myo10:

Myosin 10

HMGA2:

High mobility group AT-hook 2

PCNA:

Proliferating cell nuclear antigen

NRP2:

Neuropilin 2

HDAC4:

Histone deacetylase 4

VEGFA:

Vascular endothelial growth factors A

FGF1:

Fibroblast growth factor 1

ox-LDL:

Oxidized low density lipoprotein

STIM1:

Stromal interaction molecule 1

MASMC:

Mouse aortic smooth muscle cell

MECP2:

Methyl-CpG binding protein 2

RASA1:

Ras p21 protein activator 1

VEGFR-2:

Vascular endothelial growth factors receptor-2

GREM1:

Gremlin 1

MCL1:

Myeloid cell leukemia sequence 1

ROS:

Reactive oxygen species

CDK6:

Cyclin dependent kinase 6

FOXC1:

Forkhead transcription factor 1

PDCD6:

Programmed cell death protein 6

ILF3:

Interleukin enhancer-binding factor 3

CDK4:

Cyclin dependent kinase 4

References

  1. Das S, Zhang E, Senapati P et al (2018) A novel angiotensin II-induced long noncoding RNA giver regulates oxidative stress, inflammation, and proliferation in vascular smooth muscle cells. Circ Res 123:1298–1312. https://doi.org/10.1161/CIRCRESAHA.118.313207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grootaert MOJ, Moulis M, Roth L et al (2018) Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 114:622–634. https://doi.org/10.1093/cvr/cvy007

    Article  CAS  PubMed  Google Scholar 

  3. Yang F, Chen Q, He S et al (2018) miR-22 Is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation 137:1824–1841. https://doi.org/10.1161/CIRCULATIONAHA.117.027799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lucas T, Bonauer A, Dimmeler S (2018) RNA Therapeutics in cardiovascular disease. Circ Res 123:205–220. https://doi.org/10.1161/CIRCRESAHA.117.311311

    Article  CAS  PubMed  Google Scholar 

  5. Huang Y (2018) The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med 22:5768–5775. https://doi.org/10.1111/jcmm.13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aufiero S, Reckman YJ, Pinto YM et al (2019) Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 16:503–514. https://doi.org/10.1038/s41569-019-0185-2

    Article  PubMed  Google Scholar 

  7. Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. https://doi.org/10.1038/ncomms12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yin K, Liu X (2021) Circ_0020397 regulates the viability of vascular smooth muscle cells by up-regulating GREM1 expression via miR-502-5p in intracranial aneurysm. Life Sci 265:118800. https://doi.org/10.1016/j.lfs.2020.118800

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Wang Y, Li Y et al (2019) Decreased expression of circ_0020397 in intracranial aneurysms may be contributing to decreased vascular smooth muscle cell proliferation via increased expression of miR-138 and subsequent decreased KDR expression. Cell Adh Migr 13:220–228. https://doi.org/10.1080/19336918.2019.1619432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang R, Wang Z, Meng G et al (2020) Circular RNA CCDC66 facilitates abdominal aortic aneurysm through the overexpression of CCDC66. Cell Biochem Funct 38:830–838. https://doi.org/10.1002/cbf.3494

    Article  CAS  PubMed  Google Scholar 

  11. Yao QP, Liu Z, Yao AH et al (2020) Circular RNA circTET3 mediates migration of rat vascular smooth muscle cells by targeting miR-351-5p. J Cell Physiol 235:6831–6842. https://doi.org/10.1002/jcp.29577

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Li Y, Qi J et al (2020) Circ-calm4 serves as an miR-337-3p sponge to regulate Myo10 (Myosin 10) and promote pulmonary artery smooth muscle proliferation. Hypertension 75:668–679. https://doi.org/10.1161/HYPERTENSIONAHA.119.13715

    Article  CAS  PubMed  Google Scholar 

  13. Peng W, Li T, Pi S et al (2020) Suppression of circular RNA circDHCR24 alleviates aortic smooth muscle cell proliferation and migration by targeting miR-149-5p/MMP9 axis. Biochem Biophys Res Commun 529:753–759. https://doi.org/10.1016/j.bbrc.2020.06.067

    Article  CAS  PubMed  Google Scholar 

  14. Huang A, Zheng H, Wu Z et al (2020) Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10:3503–3517. https://doi.org/10.7150/thno.42174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Q, Liu J, Deng H et al (2020) Targeting Mitochondria-Located circRNA SCAR Alleviates NASH via Reducing mROS Output. Cell 183(76–93):e22. https://doi.org/10.1016/j.cell.2020.08.009

    Article  CAS  Google Scholar 

  16. Wu Z, Sun H, Wang C et al (2020) Mitochondrial genome-derived circRNA mc-COX2 functions as an oncogene in chronic lymphocytic leukemia. Mol Ther Nucleic Acids 20:801–811. https://doi.org/10.1016/j.omtn.2020.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Memczak S, Papavasileiou P, Peters O et al (2015) Identification and characterization of circular rnas as a new class of putative biomarkers in human blood. PLoS ONE 10:e0141214. https://doi.org/10.1371/journal.pone.0141214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu T, Wu J, Han P et al (2017) Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. BMC Genomics 18:680. https://doi.org/10.1186/s12864-017-4029-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Altesha MA, Ni T, Khan A et al (2019) Circular RNA in cardiovascular disease. J Cell Physiol 234:5588–5600. https://doi.org/10.1002/jcp.27384

    Article  CAS  PubMed  Google Scholar 

  20. Hall IF, Climent M, Quintavalle M et al (2019) Circ_Lrp6, a Circular RNA enriched in vascular smooth muscle cells, acts as a sponge regulating miRNA-145 function. Circ Res 124:498–510. https://doi.org/10.1161/CIRCRESAHA.118.314240

    Article  CAS  PubMed  Google Scholar 

  21. Abdelmohsen K, Panda AC, Munk R et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14:361–369. https://doi.org/10.1080/15476286.2017.1279788

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zeng Y, Du WW, Wu Y et al (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7:3842–3855. https://doi.org/10.7150/thno.19764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264. https://doi.org/10.1038/nsmb.2959

    Article  CAS  PubMed  Google Scholar 

  24. Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(22–37):e9. https://doi.org/10.1016/j.molcel.2017.02.017

    Article  CAS  Google Scholar 

  25. Grootaert MOJ, Bennett MR (2021) Vascular smooth muscle cells in atherosclerosis: time for a reassessment. Cardiovasc Res 117:2326–2339. https://doi.org/10.1093/cvr/cvab046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Allahverdian S, Chaabane C, Boukais K et al (2018) Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 114:540–550. https://doi.org/10.1093/cvr/cvy022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petsophonsakul P, Furmanik M, Forsythe R et al (2019) Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler Thromb Vasc Biol 39:1351–1368. https://doi.org/10.1161/ATVBAHA.119.312787

    Article  CAS  PubMed  Google Scholar 

  28. Wang F, Chen HZ (2020) Histone Deacetylase SIRT1, Smooth muscle cell function, and vascular diseases. Front Pharmacol 11:537519. https://doi.org/10.3389/fphar.2020.537519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kong P, Yu Y, Wang L et al (2019) circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res 47:3580–3593. https://doi.org/10.1093/nar/gkz141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thompson AM, Martin KA, Rzucidlo EM (2014) Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK. PLoS ONE 9:e85495. https://doi.org/10.1371/journal.pone.0085495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mziaut H, Henniger G, Ganss K et al (2020) MiR-132 controls pancreatic beta cell proliferation and survival through Pten/Akt/Foxo3 signaling. Mol Metab 31:150–162. https://doi.org/10.1016/j.molmet.2019.11.012

    Article  CAS  PubMed  Google Scholar 

  32. Chen WJ, Chen YH, Hsu YJ et al (2018) MicroRNA-132 targeting PTEN contributes to cilostazol-promoted vascular smooth muscle cell differentiation. Atherosclerosis 274:1–7. https://doi.org/10.1016/j.atherosclerosis.2018.04.030

    Article  CAS  PubMed  Google Scholar 

  33. ** W, Reddy MA, Chen Z et al (2012) Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. J Biol Chem 287:15672–15683. https://doi.org/10.1074/jbc.M111.322669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rong ZH, Chang NB, Yao QP et al (2019) Suppression of circDcbld1 alleviates intimal hyperplasia in rat carotid artery by targeting miR-145-3p/Neuropilin-1. Mol Ther Nucleic Acids 18:999–1008. https://doi.org/10.1016/j.omtn.2019.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu JY, Chang NB, Rong ZH et al (2019) circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration. FASEB J 33:2659–2668. https://doi.org/10.1096/fj.201800243RRR

    Article  CAS  PubMed  Google Scholar 

  36. Han JH, Park HS, Lee DH et al (2021) Regulation of autophagy by controlling Erk1/2 and mTOR for platelet-derived growth factor-BB-mediated vascular smooth muscle cell phenotype shift. Life Sci 267:118978. https://doi.org/10.1016/j.lfs.2020.118978

    Article  CAS  PubMed  Google Scholar 

  37. Tian J, Fu Y, Li Q et al (2020) Differential expression and bioinformatics analysis of CircRNA in PDGF-BB-induced vascular smooth muscle cells. Front Genet 11:530. https://doi.org/10.3389/fgene.2020.00530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun J, Zhang Z, Yang S (2019) Circ_RUSC2 upregulates the expression of miR-661 target gene SYK and regulates the function of vascular smooth muscle cells. Biochem Cell Biol 97:709–714. https://doi.org/10.1139/bcb-2019-0031

    Article  CAS  PubMed  Google Scholar 

  39. Mao YY, Wang JQ, Guo XX et al (2018) Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem Biophys Res Commun 505:119–125. https://doi.org/10.1016/j.bbrc.2018.09.069

    Article  CAS  PubMed  Google Scholar 

  40. Fan K, Ruan X, Wang L et al (2021) Circ_0004872 promotes platelet-derived growth factor-BB-induced proliferation, migration and dedifferentiation in HA-VSMCs via miR-513a-5p/TXNIP axis. Vascul Pharmacol 140:106842. https://doi.org/10.1016/j.vph.2021.106842

    Article  CAS  PubMed  Google Scholar 

  41. Luo Y, Huang C (2021) CircSFMBT2 facilitates vascular smooth muscle cell proliferation by targeting miR-331-3p/HDAC5. Life Sci 264:118691. https://doi.org/10.1016/j.lfs.2020.118691

    Article  CAS  PubMed  Google Scholar 

  42. Zeng Z, **a L, Fan S et al (2021) Circular RNA CircMAP3K5 acts as a MicroRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation. Circulation 143:354–371. https://doi.org/10.1161/CIRCULATIONAHA.120.049715

    Article  CAS  PubMed  Google Scholar 

  43. Zhou B, Zeng S, Li N et al (2017) Angiogenic factor with G patch and FHA domains 1 is a novel regulator of vascular injury. Arterioscler Thromb Vasc Biol 37:675–684. https://doi.org/10.1161/ATVBAHA.117.308992

    Article  CAS  PubMed  Google Scholar 

  44. Fan W, Liu Y, Li C et al (2020) microRNA-331-3p maintains the contractile type of vascular smooth muscle cells by regulating TNF-α and CD14 in intracranial aneurysm. Neuropharmacology 164:107858. https://doi.org/10.1016/j.neuropharm.2019.107858

    Article  CAS  PubMed  Google Scholar 

  45. Liu R, ** Y, Tang WH et al (2013) Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation 128:2047–2057. https://doi.org/10.1161/CIRCULATIONAHA.113.002887

    Article  PubMed  PubMed Central  Google Scholar 

  46. Weiser-Evans MCM (2017) Smooth muscle differentiation control comes full circle: the circular noncoding RNA, circActa 2, functions as a miRNA sponge to fine-tune α-SMA expression. Circ Res 121:591–593. https://doi.org/10.1161/CIRCRESAHA.117.311722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun Y, Yang Z, Zheng B et al (2017) A novel regulatory mechanism of smooth muscle α-actin expression by NRG1/circACTA2/miR-548f-5p axis. Circ Res 121:628–635. https://doi.org/10.1161/CIRCRESAHA.117.311441

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Li F, Wang X et al (2020) MiR-145 alleviates Hcy-induced VSMC proliferation, migration, and phenotypic switch through repression of the PI3K/Akt/mTOR pathway. Histochem Cell Biol 153:357–366. https://doi.org/10.1007/s00418-020-01847-z

    Article  CAS  PubMed  Google Scholar 

  49. Ma C, Gu R, Wang X et al (2020) circRNA CDR1as promotes pulmonary artery smooth muscle cell calcification by upregulating CAMK2D and CNN3 via sponging miR-7-5p. Mol Ther Nucleic Acids 22:530–541. https://doi.org/10.1016/j.omtn.2020.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu QB, Wan MY, Wang PY et al (2018) Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol 14:656–668. https://doi.org/10.1016/j.redox.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Lin J, Li B et al (2020) Screening and functional prediction of differentially expressed circRNAs in proliferative human aortic smooth muscle cells. J Cell Mol Med 24:4762–4772. https://doi.org/10.1111/jcmm.15150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang M, Li C, Cai T et al (2022) Circ_CHFR promotes PDGF-BB-induced proliferation, invasion and migration in VSMCs via miR-149-5p/NRP2 axis. J Cardiovasc Pharmacol 79:e94–e102. https://doi.org/10.1097/FJC.0000000000001055

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y, Mao W, Wang L et al (2022) Circular RNA circLMF1 regulates PDGF-BB-induced proliferation and migration of human aortic smooth muscle cells by regulating the miR-125a-3p/VEGFA or FGF1 axis. Clin Hemorheol Microcirc 80:167–183. https://doi.org/10.3233/CH-211166

    Article  CAS  PubMed  Google Scholar 

  54. Zhang B, Dong Y, Liu M, et al (2019) miR-149–5p inhibits vascular smooth muscle cells proliferation, invasion, and migration by targeting histone deacetylase 4 (HDAC4). Med Sci Monit 25: 7581–7590. https://doi.org/10.12659/MSM.916522

  55. Pellet-Many C, Mehta V, Fields L et al (2015) Neuropilins 1 and 2 mediate neointimal hyperplasia and re-endothelialization following arterial injury. Cardiovasc Res 108:288–298. https://doi.org/10.1093/cvr/cvv229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang L, Yang F, Zhao H et al (2019) Circular RNA circCHFR facilitates the proliferation and migration of vascular smooth muscle via miR-370/FOXO1/Cyclin D1 pathway. Mol Ther Nucleic Acids 16:434–441. https://doi.org/10.1016/j.omtn.2019.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X, Li L, Dong X et al (2021) Circ_GRN promotes the proliferation, migration, and inflammation of vascular smooth muscle cells in atherosclerosis through miR-214-3p/FOXO1 axis. J Cardiovasc Pharmacol 77:470–479. https://doi.org/10.1097/FJC.0000000000000982

    Article  CAS  PubMed  Google Scholar 

  58. Ding P, Ding Y, Tian Y et al (2020) Circular RNA circ_0010283 regulates the viability and migration of oxidized low-density lipoprotein-induced vascular smooth muscle cells via an miR-370-3p/HMGB1 axis in atherosclerosis. Int J Mol Med 46:1399–1408. https://doi.org/10.3892/ijmm.2020.4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang Z, Li P, Wu L et al (2020) Hsa_circ_0029589 knockdown inhibits the proliferation, migration and invasion of vascular smooth muscle cells via regulating miR-214-3p and STIM1. Life Sci 259:118251. https://doi.org/10.1016/j.lfs.2020.118251

    Article  CAS  PubMed  Google Scholar 

  60. Zhuang JB, Li T, Hu XM, et al (2020) Circ_CHFR expedites cell growth, migration and inflammation in ox-LDL-treated human vascular smooth muscle cells via the miR-214–3p/Wnt3/β-catenin pathway. Eur Rev Med Pharmacol Sci 24: 3282–3292. https://doi.org/10.26355/eurrev_202003_20696

  61. Sun C, Li J, Li Y et al (2021) Circular RNA circUBR4 regulates ox-LDL-induced proliferation and migration of vascular smooth muscle cells through miR-185-5p/FRS2 axis. Mol Cell Biochem 476:3899–3910. https://doi.org/10.1007/s11010-021-04207-0

    Article  CAS  PubMed  Google Scholar 

  62. Zhang LL (2020) CircRNA-PTPRA promoted the progression of atherosclerosis through sponging with miR-636 and upregulating the transcription factor SP1. Eur Rev Med Pharmacol Sci 24: 12437–12449. https://doi.org/10.26355/eurrev_202012_24039.

  63. Li R, Jiang Q, Zheng Y (2021) Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox-LDL through miR-326-3p/VAMP3 axis in atherosclerosis. J Cell Mol Med 25:8028–8038. https://doi.org/10.1111/jcmm.16734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kang L, Jia H, Huang B et al (2021) Identification of differently expressed mRNAs in atherosclerosis reveals CDK6 is regulated by circHIPK3/miR-637 axis and promotes cell growth in human vascular smooth muscle cells. Front Genet 12:596169. https://doi.org/10.3389/fgene.2021.596169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji N, Wang Y, Gong X et al (2021) CircMTO1 inhibits ox-LDL-stimulated vascular smooth muscle cell proliferation and migration via regulating the miR-182-5p/RASA1 axis. Mol Med 27:73. https://doi.org/10.1186/s10020-021-00330-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fu X, Niu T, Yang T et al (2021) CircMAPK1 promotes the proliferation and migration of vascular smooth muscle cells through miR-22-3p/ methyl-CpG binding protein 2 axis. Nutr Metab Cardiovasc Dis 31:2189–2198. https://doi.org/10.1016/j.numecd.2021.04.005

    Article  CAS  PubMed  Google Scholar 

  67. Yu H, Zhao L, Zhao Y et al (2020) Circular RNA circ_0029589 regulates proliferation, migration, invasion, and apoptosis in ox-LDL-stimulated VSMCs by regulating miR-424-5p/IGF2 axis. Vascul Pharmacol 135:106782. https://doi.org/10.1016/j.vph.2020.106782

    Article  CAS  PubMed  Google Scholar 

  68. Zhao F, Chen T, Jiang N (2020) CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of abdominal aortic aneurysm by regulating the proliferation and apoptosis of primary vascular smooth muscle cells. Exp Ther Med 19:3760–3766. https://doi.org/10.3892/etm.2020.8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen X, Yang S, Yang J et al (2021) The potential role of hsa_circ_0005505 in the rupture of human intracranial aneurysm. Front Mol Biosci 8:670691. https://doi.org/10.3389/fmolb.2021.670691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qin K, Tian G, Zhou D et al (2021) Circular RNA circ-ARFIP2 regulates proliferation, migration and invasion in human vascular smooth muscle cells via miR-338-3p-dependent modulation of KDR. Metab Brain Dis 36:1277–1288. https://doi.org/10.1007/s11011-021-00726-3

    Article  CAS  PubMed  Google Scholar 

  71. Xu J, Li L, Yun HF et al (2015) MiR-138 promotes smooth muscle cells proliferation and migration in db/db mice through down-regulation of SIRT1. Biochem Biophys Res Commun 463:1159–1164. https://doi.org/10.1016/j.bbrc.2015.06.076

    Article  CAS  PubMed  Google Scholar 

  72. Feng Z, Zhang X, Li L et al (2019) Tumor-associated macrophage-derived exosomal microRNA-155-5p stimulates intracranial aneurysm formation and macrophage infiltration. Clin Sci (Lond) 133:2265–2282. https://doi.org/10.1042/CS20190680

    Article  CAS  Google Scholar 

  73. Ding X, Wang X, Han L et al (2021) CircRNA DOCK1 regulates miR-409-3p/MCL1 axis to modulate proliferation and apoptosis of human brain vascular smooth muscle cells. Front Cell Dev Biol 9:655628. https://doi.org/10.3389/fcell.2021.655628

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yang L, Liang H, Meng X et al (2020) mmu_circ_0000790 is involved in pulmonary vascular remodeling in mice with HPH via MicroRNA-374c-mediated FOXC1. Mol Ther Nucleic Acids 20:292–307. https://doi.org/10.1016/j.omtn.2019.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Tan X, Wu Y et al (2021) Hsa_circ_0002062 promotes the proliferation of pulmonary artery smooth muscle cells by regulating the Hsa-miR-942-5p/CDK6 signaling pathway. Front Genet 12:673229. https://doi.org/10.3389/fgene.2021.673229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou S, Jiang H, Li M et al (2019) Circular RNA hsa_circ_0016070 is associated with pulmonary arterial hypertension by promoting PASMC proliferation. Mol Ther Nucleic Acids 18:275–284. https://doi.org/10.1016/j.omtn.2019.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen L, Hu Y, Lou J et al (2019) CircRNA-0044073 is upregulated in atherosclerosis and increases the proliferation and invasion of cells by targeting miR-107. Mol Med Rep 19:3923–3932. https://doi.org/10.3892/mmr.2019.10011

    Article  CAS  PubMed  Google Scholar 

  78. Chen J, Cui L, Yuan J et al (2017) Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 494:126–132. https://doi.org/10.1016/j.bbrc.2017.10.068

    Article  CAS  PubMed  Google Scholar 

  79. Choe N, Kwon DH, Shin S et al (2017) The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4). FEBS Lett 591:1041–1052. https://doi.org/10.1002/1873-3468.12606

    Article  CAS  PubMed  Google Scholar 

  80. Nagata M, Minami M, Yoshida K et al (2020) Calcium-binding protein S100A4 is upregulated in carotid atherosclerotic plaques and contributes to expansive remodeling. J Am Heart Assoc 9:e016128. https://doi.org/10.1161/JAHA.120.016128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yue J, Zhu T, Yang J et al (2020) CircCBFB-mediated miR-28-5p facilitates abdominal aortic aneurysm via LYPD3 and GRIA4. Life Sci 253:117533. https://doi.org/10.1016/j.lfs.2020.117533

    Article  CAS  PubMed  Google Scholar 

  82. Jiang Y, Liu H, Yu H et al (2021) Circular RNA Calm4 regulates hypoxia-induced pulmonary arterial smooth muscle cells pyroptosis via the Circ-Calm4/miR-124-3p/PDCD6 axis. Arterioscler Thromb Vasc Biol 41:1675–1693. https://doi.org/10.1161/ATVBAHA.120.315525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  84. Sun Y, Zhang S, Yue M et al (2019) Angiotensin II inhibits apoptosis of mouse aortic smooth muscle cells through regulating the circNRG-1/miR-193b-5p/NRG-1 axis. Cell Death Dis 10:362. https://doi.org/10.1038/s41419-019-1590-5

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zheng C, Niu H, Li M et al (2015) Cyclic RNA hsa-circ-000595 regulates apoptosis of aortic smooth muscle cells. Mol Med Rep 12:6656–6662. https://doi.org/10.3892/mmr.2015.4264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lv P, Yin YJ, Kong P et al (2021) SM22alpha loss contributes to apoptosis of vascular smooth muscle cells via macrophage-derived circRasGEF1B. Oxid Med Cell Longev 2021:5564884. https://doi.org/10.1155/2021/5564884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lai CH, Chang CW, Lee FT et al (2020) Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice. Atherosclerosis 297:16–24. https://doi.org/10.1016/j.atherosclerosis.2020.01.029

    Article  CAS  PubMed  Google Scholar 

  89. Chi C, Li DJ, Jiang YJ et al (2019) Vascular smooth muscle cell senescence and age-related diseases: state of the art. Biochim Biophys Acta Mol Basis Dis 1865:1810–1821. https://doi.org/10.1016/j.bbadis.2018.08.015

    Article  CAS  PubMed  Google Scholar 

  90. Ma Y, Zheng B, Zhang XH, et al (2021) circACTA2 mediates Ang II-induced VSMC senescence by modulation of the interaction of ILF3 with CDK4 mRNA. Aging (Albany NY) 13: 11610–11628. https://doi.org/10.18632/aging.202855

  91. Wang S, Zhan J, Lin X et al (2020) CircRNA-0077930 from hyperglycaemia-stimulated vascular endothelial cell exosomes regulates senescence in vascular smooth muscle cells. Cell Biochem Funct 38:1056–1068. https://doi.org/10.1002/cbf.3543

    Article  CAS  PubMed  Google Scholar 

  92. Castella S, Bernard R, Corno M et al (2015) Ilf3 and NF90 functions in RNA biology. Wiley Interdiscip Rev RNA 6:243–256. https://doi.org/10.1002/wrna.1270

    Article  CAS  PubMed  Google Scholar 

  93. **e M, Yu T, **g X et al (2020) Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer 19:112. https://doi.org/10.1186/s12943-020-01208-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81371675).

Author information

Authors and Affiliations

Authors

Contributions

Yu** Chen conceptualised the manuscript. Yu** Chen and Meichun Wu wrote the manuscript. Meichun Wu and Min Xun designed and prepared the figures and tables. All authors approved the final manuscript.

Corresponding author

Correspondence to Yu** Chen.

Ethics declarations

Ethics approval

Not applicable.

Consent to Participate

Not applicable

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Xun, M. & Chen, Y. Circular RNAs: regulators of vascular smooth muscle cells in cardiovascular diseases. J Mol Med 100, 519–535 (2022). https://doi.org/10.1007/s00109-022-02186-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02186-3

Keywords

Navigation